Answer:
-19
Step-by-step explanation:
-11+(-8)
-11-8
-19
hole this is correct
I think a) would be the answer. I proceeded by elimination: the domaine of the function goes from 3 and continues to infinity, so that leaves with a) and b) as possible answers. Both have the same range and both of their functions reflect over the x axis, so we have to compare the two answer by looking at the position of the function in the graph. The function is in the first quadrant (top right corner), so the position of the function has to be at our right, which leads us to a).
Answer:
Therefore,
![r=\sqrt[3]{\frac{3V}{4\pi }}](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%20%7D%7D)
is the required r
Step-by-step explanation:
Given:
Volume of inside of the sphere is given as

where r is the radius of the sphere
To Find:
r =?
Solution:
We have
......Given
![3\times V=4\pi r^{3} \\\\\therefore r^{3}=\frac{3V}{4\pi } \\\\\therefore r=\sqrt[3]{\frac{3V}{4\pi }} \textrm{which is the expression for r}](https://tex.z-dn.net/?f=3%5Ctimes%20V%3D4%5Cpi%20r%5E%7B3%7D%20%5C%5C%5C%5C%5Ctherefore%20r%5E%7B3%7D%3D%5Cfrac%7B3V%7D%7B4%5Cpi%20%7D%20%5C%5C%5C%5C%5Ctherefore%20r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%20%7D%7D%20%5Ctextrm%7Bwhich%20is%20the%20expression%20for%20r%7D)
Therefore,
![r=\sqrt[3]{\frac{3V}{4\pi }}](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%20%7D%7D)
is the required r
There are 12 inches in a foot. When you convert 12 into millimeters, it becomes 304.8.