The answer would be 11 because the x's 9 doesnt have to move because they're on the same point. If you take 7 away from -7 you get zero. Add 4 to that 7 and you get 11. Make sesnse?
Hope this helped!
Answer:
9 hours
Step-by-step explanation:
1 chapter ≈ .5 hour
18 x .5 = 9
Answer:
μ = 5.068 oz
Step-by-step explanation:
Normal distribution formula to use the table attached
Z = (x - μ)/σ
where μ is mean, σ is standard deviation, Z is on x-axis and x is a desired point.
98% of 6-oz. cups will not overflow means that the area below the curve is equal to 0.49; note that the curve is symmetrical respect zero, so, 98% of the cases relied between the interval (μ - some value) and (μ + some value)].
From table attached, area = 0.49 when Z = 2.33. From data, σ = 0.4 oz and x = 6 oz (maximum capacity of the cup). Isolating x from the formula gives
Z = (x - μ)/σ
2.33 = (6 - μ)/0.4
μ = 6 - 2.33*0.4
μ = 5.068
This means that with a mean of 5 oz and a standard deviation of 0.4 oz, the machine will discharge a maximum of 6 oz in the 98% of the cases.
If you are factoring it you can factor it into (x+5)^2
Answer:
Hi there!
I might be able to help you!
It is NOT a function.
<u>Determining whether a relation is a function on a graph is relatively easy by using the vertical line test. If a vertical line crosses the relation on the graph only once in all locations, the relation is a function. However, if a vertical line crosses the relation more than once, the relation is not a function</u>. <u>X = y2 would be a sideways parabola and therefore not a function.</u> Good test for function: Vertical Line test. If a vertical line passes through two points on the graph of a relation, it is <em>not </em>a function. A relation which is not a function. The x-intercept of a function is calculated by substituting the value of f(x) as zero. Similarly, the y-intercept of a function is calculated by substituting the value of x as zero. The slope of a linear function is calculated by rearranging the equation to its general form, f(x) = mx + c; where m is the slope.
A relation that is not a function
As we can see duplication in X-values with different y-values, then this relation is not a function.
A relation that is a function
As every value of X is different and is associated with only one value of y, this relation is a function.
Step-by-step explanation:
It's up there!
God bless you!