1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldi70 [24.7K]
3 years ago
13

62.5% as a decimal and as a fraction. PLEASE SHOW WORK.

Mathematics
2 answers:
Fofino [41]3 years ago
5 0

Answer:

62.5 as a decimal would be 0.625

As a fraction it would be 625/1000.

Step-by-step explanation:

To write 0.625 as a fraction you have to write 0.625 as numerator and put 1 as the denominator. Now you multiply numerator and denominator by 10 as long as you get in numerator the whole number.

0.625 = 0.625/1 = 6.25/10 = 62.5/100 = 625/1000  

And finally we have:

0.625 as a fraction equals 625/1000

Allushta [10]3 years ago
3 0

Answer:

decimal

⇒\frac{62.5}{100}

⇒62.5÷100

⇒62.5

fraction

⇒\frac{62.5}{100}

Step-by-step explanation:

You might be interested in
The price of an article with 13% VAT is Rs. 2,034. What is
Jobisdone [24]

Step-by-step explanation:

this will may be helpful for you.

6 0
3 years ago
Read 2 more answers
A savings account with compounded interest can be modeled by which type of graph
Leona [35]

Answer: The answer is (C) Exponential.

Step-by-step explanation: We are to select out of the given options the type of graph that a savings account with compounded interest be modelled.

We know that compounding gives more interest because we are earning interest on interest, and not just on the principal.

The formula foe compound interest is given by

C.I.=P(1+\dfrac{r}{100})^n, where, 'P' is the principal, r is the rate of interest and 'n' is the number of years.

Therefore, we can see that the function is of exponential type.

If we draw the graph of compound interest earned every year with a particular rate of interest is of exponential type.

So, the correct option is (C) Exponential.

6 0
3 years ago
Read 2 more answers
Ples help will mark brainliest if 2 answers.
BabaBlast [244]

Answer:

see below

Step-by-step explanation:

Choose a couple of values for x. Figure out the corresponding values for y. Plot those points and draw a line through them.

Let's choose x=0 and x=4. Then the corresponding y-values are ...

y = 2·0 = 0 . . . . . point (x, y) = (0, 0)

y = 2·4 = 8 . . . . . point (x, y) = (4, 8)

These are graphed below.

7 0
4 years ago
How many sections are there when you fold a paper 8 times
VikaD [51]
32 if you fold it 4 times and times that by 2 it will be 32

5 0
4 years ago
Read 2 more answers
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
Other questions:
  • What is the first quartile of this data set? {6, 47, 49, 15, 43, 41, 7, 36}
    7·1 answer
  • Twice the sum of a number and 5 is equal to three times the difference of the number and 7. Find the number.
    6·1 answer
  • Which describes a situation when an estimation is appropriate? A. Margo wants to buy a sweater for $15.98 and a pair of socks fo
    5·1 answer
  • 2x + y = 20<br> 6x - 5y =12
    10·2 answers
  • A shipping company processed 72,124 packages this month. If this is 23.5% more than last month, how many packages did they proce
    5·1 answer
  • If you made a graph to represent a situation where each avocado costs $0.89, what would be the slope of the line?
    14·1 answer
  • F(x)=x2-3x-2 what is the g(x)
    15·1 answer
  • Make a conditional relative frequency table for the columns of movie type. Determine which statement has the strongest associati
    7·2 answers
  • Exercice 1. Une espèces animale est menacée depuis 1950. Le nombre d’animaux, en millions, de cette espèce est donné par la fonc
    9·1 answer
  • The ages of Sara and Samia are in the ratio 3: 5. Six years from now the ratio of
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!