Step-by-step explanation:
this will may be helpful for you.
Answer: The answer is (C) Exponential.
Step-by-step explanation: We are to select out of the given options the type of graph that a savings account with compounded interest be modelled.
We know that compounding gives more interest because we are earning interest on interest, and not just on the principal.
The formula foe compound interest is given by
where, 'P' is the principal, r is the rate of interest and 'n' is the number of years.
Therefore, we can see that the function is of exponential type.
If we draw the graph of compound interest earned every year with a particular rate of interest is of exponential type.
So, the correct option is (C) Exponential.
Answer:
see below
Step-by-step explanation:
Choose a couple of values for x. Figure out the corresponding values for y. Plot those points and draw a line through them.
Let's choose x=0 and x=4. Then the corresponding y-values are ...
y = 2·0 = 0 . . . . . point (x, y) = (0, 0)
y = 2·4 = 8 . . . . . point (x, y) = (4, 8)
These are graphed below.
32 if you fold it 4 times and times that by 2 it will be 32
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
<u>Calculus</u>
Implicit Differentiation
The derivative of a constant is equal to 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Product Rule: ![\frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Quotient Rule: ![\frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
-y - 2x³ = y²
Rate of change of tangent line at point (-1, -2)
<u>Step 2: Differentiate Pt. 1</u>
<em>Find 1st Derivative</em>
- Implicit Differentiation [Basic Power Rule]:

- [Algebra] Isolate <em>y'</em> terms:

- [Algebra] Factor <em>y'</em>:

- [Algebra] Isolate <em>y'</em>:

- [Algebra] Rewrite:

<u>Step 3: Differentiate Pt. 2</u>
<em>Find 2nd Derivative</em>
- Differentiate [Quotient Rule/Basic Power Rule]:

- [Derivative] Simplify:

- [Derivative] Back-Substitute <em>y'</em>:

- [Derivative] Simplify:

<u>Step 4: Find Slope at Given Point</u>
- [Algebra] Substitute in <em>x</em> and <em>y</em>:

- [Pre-Algebra] Exponents:

- [Pre-Algebra] Multiply:

- [Pre-Algebra] Add:

- [Pre-Algebra] Exponents:

- [Pre-Algebra] Divide:

- [Pre-Algebra] Add:

- [Pre-Algebra] Simplify:
