1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sophie [7]
2 years ago
8

The quadratic x squared - 4x -21 find values of a and b

Mathematics
1 answer:
skelet666 [1.2K]2 years ago
8 0
So the equation to remember is ax^2+bx+c so since the equation is x^2-4x-21 then a is x^2 and b is -4x
You might be interested in
erin is taking part in a play at the community theater the cast and crew ordered T-shirts for all the volunteers the cost of a t
pochemuha

Answer:

The answer is the second one because it is less than or equal to 35

3 0
3 years ago
F(x) = x2 − x − ln(x) (a) find the interval on which f is increasing. (enter your answer using interval notation.) find the inte
Mekhanik [1.2K]

Answer:

(a) Decreasing on (0, 1) and increasing on (1, ∞)

(b) Local minimum at (1, 0)

(c) No inflection point; concave up on (0, ∞)

Step-by-step explanation:

ƒ(x) = x² - x – lnx

(a) Intervals in which ƒ(x) is increasing and decreasing.

Step 1. Find the zeros of the first derivative of the function

ƒ'(x) = 2x – 1 - 1/x = 0

           2x² - x  -1 = 0

     ( x - 1) (2x + 1) = 0

         x = 1 or x = -½

We reject the negative root, because the argument of lnx cannot be negative.

There is one zero at (1, 0). This is your critical point.

Step 2. Apply the first derivative test.

Test all intervals to the left and to the right of the critical value to determine if the derivative is positive or negative.

(1) x = ½

ƒ'(½) = 2(½) - 1 - 1/(½) = 1 - 1 - 2 = -1

ƒ'(x) < 0 so the function is decreasing on (0, 1).

(2) x = 2

ƒ'(0) = 2(2) -1 – 1/2 = 4 - 1 – ½  = ⁵/₂

ƒ'(x) > 0 so the function is increasing on (1, ∞).

(b) Local extremum

ƒ(x) is decreasing when x < 1 and increasing when x >1.

Thus, (1, 0) is a local minimum, and ƒ(x) = 0 when x = 1.

(c) Inflection point

(1) Set the second derivative equal to zero

ƒ''(x) = 2 + 2/x² = 0

             x² + 2 = 0

                   x² = -2

There is no inflection point.

(2). Concavity

Apply the second derivative test on either side of the extremum.

\begin{array}{lccc}\text{Test} & x < 1 & x = 1 & x > 1\\\text{Sign of f''} & + & 0 & +\\\text{Concavity} & \text{up} & &\text{up}\\\end{array}

The function is concave up on (0, ∞).

6 0
3 years ago
Consider these functions
vitfil [10]

9514 1404 393

Answer:

  C.  3x² +24

Step-by-step explanation:

Use the given function definitions and simplify.

  g(f(x))=g\left(\dfrac{1}{3}x^2+4\right)\\\\=9\left(\dfrac{1}{3}x^2+4\right)-12\\\\=3x^2+36-12\\\\\boxed{g(f(x))=3x^2+24}\qquad\textbf{matches C}

5 0
2 years ago
Two stores carry a simuler stereo for the same originail price of $573. One store offers a 16% discount and the second store sel
snow_tiger [21]

store number two gives a better discount .

if you go to store one and buy it for 573 with the 16% DISCOUNT, YOU GET 481.32, THEREFORE, STORE TWO IS BETTER(caps lock) also did store two have a discount?


3 0
3 years ago
How to solve for the answer
yarga [219]
A.step 1 because it should be x^2 not 2x
3 0
3 years ago
Other questions:
  • Explain how you can tell that 31/33 is in simplest form
    7·2 answers
  • Is -0.06006000600006... rational or irrational?<br>​
    13·2 answers
  • Solve the equation for <img src="https://tex.z-dn.net/?f=x" id="TexFormula1" title="x" alt="x" align="absmiddle" class="latex-fo
    13·2 answers
  • Y+12=-50<br><br> ASAP help<br><br> PLEASE!!
    11·2 answers
  • Ill mark brainlist pllss help
    5·1 answer
  • SOMEONE PLS HELP ILL MARK BRAINLY
    12·1 answer
  • 7) Original price: ?<br> Discount: 25%<br> Sale price:<br> $28
    6·2 answers
  • Can somebody help me I’m confused
    11·1 answer
  • Andrés, in his shop, stores the buttons in bags. In box A, he has bags of 24 buttons each with no buttons left. In box B, he has
    6·1 answer
  • Here is the graph of the sequence M define M recursively using function notation<br> 
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!