Answer: (110.22, 125.78)
Step-by-step explanation:
The confidence interval for the population mean is given by :-
![\mu\ \pm z_{\alpha/2}\times\dfrac{\sigma}{\sqrt{n}}](https://tex.z-dn.net/?f=%5Cmu%5C%20%5Cpm%20z_%7B%5Calpha%2F2%7D%5Ctimes%5Cdfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D)
Given : Sample size = 463
![\mu=118\text{ minutes}](https://tex.z-dn.net/?f=%5Cmu%3D118%5Ctext%7B%20minutes%7D)
![\sigma=65\text{ minutes}](https://tex.z-dn.net/?f=%5Csigma%3D65%5Ctext%7B%20minutes%7D)
Significance level : ![\alpha=1-0.99=0.01](https://tex.z-dn.net/?f=%5Calpha%3D1-0.99%3D0.01)
Critical value : ![z_{\alpha/2}=z_{0.005}=\pm2.576](https://tex.z-dn.net/?f=z_%7B%5Calpha%2F2%7D%3Dz_%7B0.005%7D%3D%5Cpm2.576)
We assume that the population is normally distributed.
Now, the 90% confidence interval for the population mean will be :-
![118\ \pm\ 2.576\times\dfrac{65}{\sqrt{463}} \\\\\approx118\pm7.78=(118-7.78\ ,\ 118+7.78)=(110.22,\ 125.78)](https://tex.z-dn.net/?f=118%5C%20%5Cpm%5C%202.576%5Ctimes%5Cdfrac%7B65%7D%7B%5Csqrt%7B463%7D%7D%20%5C%5C%5C%5C%5Capprox118%5Cpm7.78%3D%28118-7.78%5C%20%2C%5C%20118%2B7.78%29%3D%28110.22%2C%5C%20125.78%29)
Hence, 99% confidence interval for the mean study time of all first-year students = (110.22, 125.78)
Multiply 14 by the denominator of the fraction.
14 • 7 = 98
Then add it to the numerator.
98 + 2 = 100
Your answer is 100/7
Answer:
1) 1 to 3
2) 1/3 B*H
Step-by-step explanation:
Answer number 3
Step-by-step explanation:
Answer:
B and D are the correct answers.
Step-by-step explanation: