The other 2 angles of given right angles are 61.93° and 28.072°, if a triangle with side lengths 8, 15, and 17 is a right triangle by the converse of the Pythagorean Theorem.
Step-by-step explanation:
The given is,
Right angled triangle,
Side lengths are 8, 15, and 17
Step:1
The given triangle is right angle triangle by the converse of Pythagorean theorem, so the trigonometric ratio,
Ref the attachment,
For angle a,
...................................................(1)
Where, Opp - 8
Hyp - 17
From equation (1),
= 0.470588
(0.470588)
a = 28.072°
For angle b,
...................................................(1)
Where, Opp - 15
Hyp - 17
From equation (1),
= 0.882352
(0.882352)
b = 61.93°
Step:2
Check for solution for right angle triangle,
90 ° = Other 2 angles
90 ° = a + b
90 ° = 28.072° + 61.93°
90 ° = 90 °
Result:
The other 2 angles of given right angles are 61.93° and 28.07°, if a triangle with side lengths 8, 15, and 17 is a right triangle by the converse of the Pythagorean Theorem.
Answer:
Step-by-step explanation:
solve the following proportion?
5/10 = 8/w
5 : 10 = 8 : w
w = (10 * 8) : 5
w = 80 : 5
w = 16
----------------------
check
5 : 10 = 8 : 16
0.5 = 0.5
The answer is good
The answer should be b
The other one should be 8
Answer:
2 5/12
Step-by-step explanation:
8 5/6 + 2 3/4 = 8 10/12 + 2 9/12 = 10 19/12 = 10 + 1 7/12 = 11 7/12
13 12/12 - 11 7/12 = 2 5/12