Answer:
<1=39 degrees
<2=141 degrees
Step-by-step explanation:
Detailed ans is in attachment
hope it helps:)
plz mark as brainliest
Answer:
A = 5t +7000
Step-by-step explanation:
Tim's rate of increasing altitude is 5 ft/min, so his change in altitude in t minutes is 5t.
If he started at 7000 ft, his altitude as a function of time is the sum of his initial altitude and his change in altitude:
A = 5t +7000
Answer:
The original price range of soda is $10 to $39.4
Step-by-step explanation:
Given as :
The discount coupon applied on grocery = 5%
The cost of soda after discount coupon ranges = $0.50 to $1.97
Let the original price range of soda = $A
Now, According to question
discount on original price = the cost after discount
So, initial original price = x
5% of x = $0.50
0.05 × x = $0.50
∴ x = 
i.e x = $10
Again final original price = y
5% of y = $1.97
0.05 × y = $1.97
∴ y = 
i.e y = $39.4
So, The original price range of soda = $A = $10 to $39.4
Hence, The original price range of soda is $10 to $39.4 Answer
Answer:
2%
Correct Answer : 2%
Required Percentage = [ (130/(6.5 * 1000)) * 100]% = 2%.
Step-by-step explanation:
please give me a heart anyone else please give me a heart thank you
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B = C → A = C - B
→ B = C - A
Use the Double Angle Identity: cos 2A = 2 cos² A - 1
→ (cos 2A + 1)/2 = cos² A
Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · 2 cos [(A - B)/2]
Use Even/Odd Identity: cos (-A) = cos (A)
<u>Proof LHS → RHS:</u>
LHS: cos² A + cos² B + cos² C

![\text{Sum to Product:}\quad 1+\dfrac{1}{2}\bigg[2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)\bigg]+\cos^2 C\\\\\\.\qquad \qquad \qquad =1+\cos (A+B)\cdot \cos (A-B)+\cos^2 C](https://tex.z-dn.net/?f=%5Ctext%7BSum%20to%20Product%3A%7D%5Cquad%201%2B%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B2%5Ccos%20%5Cbigg%28%5Cdfrac%7B2A%2B2B%7D%7B2%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7B2A-2B%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%2B%5Ccos%5E2%20C%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D1%2B%5Ccos%20%28A%2BB%29%5Ccdot%20%5Ccos%20%28A-B%29%2B%5Ccos%5E2%20C)

![\text{Factor:}\qquad \qquad 1+\cos C[\cos (A-B)+\cos C]](https://tex.z-dn.net/?f=%5Ctext%7BFactor%3A%7D%5Cqquad%20%5Cqquad%201%2B%5Ccos%20C%5B%5Ccos%20%28A-B%29%2B%5Ccos%20C%5D)
![\text{Sum to Product:}\quad 1+\cos C\bigg[2\cos \bigg(\dfrac{A-B+C}{2}\bigg)\cdot \cos \bigg(\dfrac{A-B-C}{2}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =1+2\cos C\cdot \cos \bigg(\dfrac{A+(C-B)}{2}\bigg)\cdot \cos \bigg(\dfrac{-B-(C-A)}{2}\bigg)](https://tex.z-dn.net/?f=%5Ctext%7BSum%20to%20Product%3A%7D%5Cquad%201%2B%5Ccos%20C%5Cbigg%5B2%5Ccos%20%5Cbigg%28%5Cdfrac%7BA-B%2BC%7D%7B2%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7BA-B-C%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D1%2B2%5Ccos%20C%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7BA%2B%28C-B%29%7D%7B2%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7B-B-%28C-A%29%7D%7B2%7D%5Cbigg%29)


LHS = RHS: 1 + 2 cos A · cos B · cos C = 1 + 2 cos A · cos B · cos C 