<span>The amount P as a function of t (in years) is given by
P(t) = P0 (1 + r/n)^(t n)
So if n = 4, and r = 0.02, and P0 = 1000, then
P(t) = 1000 (1 + 0.02/4)^(4 t) = 1000 (1 + 0.005)^(4 t)
At the end of the first quarter, t = 1/4, so
P(1/4) = $1000 (1.005)^(1) = $1005
At the end of the second quarter, t = 1/2 , therefore
P(1/2) = $1000 (1.005)^(2) = $1000 (1.010025) = $1010.03
At the end of the third quarter , t = 3/4, therefore
P(3/4) = $1000 (1.005)^(3) = $1000 (1.015075125) = $1015.08
At the end of the year, t = 4, therefore
P(1) = $1000 (1.005)^4 = $1000 (1.020150500625) = $1020.15
As for the second question, after the first period (quarter),
the formula becomes
P = P0 (1.005)^1 = 1.005 P0
which is choice A. </span>
Answer: 3.14
Step-by-step explanation:
Succinctly, pi—which is written as the Greek letter for p, or π—is the ratio of the circumference of any circle to the diameter of that circle. Regardless of the circle's size, this ratio will always equal pi. In decimal form, the value of pi is approximately 3.14.
9514 1404 393
Answer:
7 in
Step-by-step explanation:
For width w in inches, the length is given as 2w+1. The area is the product of length and width, so we have ...
A = LW
105 = (2w +1)w
2w^2 +w -105 = 0
To factor this, we're looking for factors of -210 that have a difference of 1.
-210 = -1(210) = -2(105) = -3(70) = -5(42) = -6(35) = -7(30) = -10(21) = -14(15)
So, the factorization is ...
(2w +15)(w -7) = 0
Solutions are values of w that make the factors zero:
w = -15/2, +7 . . . . . negative dimensions are irrelevant
The width of the rectangle is 7 inches.
Answer:
no writting shown but
Step-by-step explanation:
i guess its super cool encouragement is the most