Answer: provided in the explanation segment
Step-by-step explanation:
here i will give a step by step analysis of the question;
A: Optimization Formulation
given Xij = X no. of units of product i manufactured in Plant j, where i = 1,2,3 and J = 1,2,3,4,5
Objective function: Minimize manufacturing cost (Z)
Z = 31 X11 + 29 X12 + 32X13 + 28X14 + 29 X15 + 45 X21 + 41 X22 + 46X23 + 42X24 + 43 X25 + 38 X31 + 35 X32 + 40X33
s.t
X11 + X12 + X13 + X14 + X15 = 600
X21 + X22 + X23 + X24 + X25 = 1000
X31 + X32 + X33 = 800
X11 + X21 + X31 <= 400
X12 + X22 + X32 <= 600
X13 + X23 + X33 <= 400
X14 + X24 <= 600
X15 + X25 <= 1000
Xij >= 0 for all i,j
B:
Yes, we can formulate this problem as a transportation problem because in transportation problem we need to match the supply of source to demand of destination. Here we can assume that the supply of source is nothing but the manufacturing capability of plant and demand of destination is similar to the demand of products.
cheers i hope this helps!!
Expected value of the bet is
the sum of the products of value of outcome and its probability,
less the amount paid to place the bet.
Outcomes value probability
win 225 1/4
lose 0 3/4
cost of bet = 40
So expected value of bet
E[X]=225*(1/4)+0*(3/4)-40
=56.25-40
=16.25
This means that in the long run, gambler will win, since the expected value is positive. (does NOT mean she will win in the next bet!)
<h2>
Answer: m = -1</h2>
Step-by-step explanation:
If you follow the formula : y2 - y1 / x2 - x1
You will get 
m = -1
* Hopefully this helps:) Mark me the brainliest:)!!!
Answer:
<h2>
The width, x, of this parallelogram is 16 cm.</h2>
Step-by-step explanation:
In #14, the area of the parallelogram is 528 cm².
This area is also the value of the formula A = L·W:
A = 528 cm² = (33 cm)·W
To determine the width, W, of this parallelogram, we perform the following division:
W = (528 cm²) / (33 cm) = 16 cm
The width, x, of this parallelogram is 16 cm.