let's recall the remainder theorem.
we know that (x-1) is a factor, that means x -1 = 0 or x = 1.
since we know that (x-1) is a factor, then dividing the polynomial by it will give us a remainder of 0, which correlates with saying that f(1) = 0, in this case, so we can simply plug in "1" as the argument, knowing it gives 0.
![f(x)=3x^3+kx-11\\\\[-0.35em]~\dotfill\\\\\stackrel{0}{f(1)}=3(1)^3+k(1)-11\implies \stackrel{f(1)}{0}=3+k-11\implies 0=-8+k\implies 8=k](https://tex.z-dn.net/?f=f%28x%29%3D3x%5E3%2Bkx-11%5C%5C%5C%5C%5B-0.35em%5D~%5Cdotfill%5C%5C%5C%5C%5Cstackrel%7B0%7D%7Bf%281%29%7D%3D3%281%29%5E3%2Bk%281%29-11%5Cimplies%20%5Cstackrel%7Bf%281%29%7D%7B0%7D%3D3%2Bk-11%5Cimplies%200%3D-8%2Bk%5Cimplies%208%3Dk)
V=900m³
V=L*w*h
V=20*3*w
V=60*w
60*w=900
w=900/60
w=15m
Answer:
182 milliliters per hour
Step-by-step explanation:
4368/24=182
Answer: 16
Step-by-step explanation:
multiplying by negative exponents can be a little tricky. So (1/4x)^-2 becomes 16/x^2 = __/x^2 so the missing number is 16
He spent 26.95 on each. It's just 80.85/3 =26.95