The least common denominator is 5y, and can be obtained by multiplying
-1/y by 5/5 to get -5/5y.
If we add the numbers using the least common denominator, we get:
-5/5y + 2/5y = -3/5y
First distribute the negative through the parenthesis on the left and the 2 on the right.
-5 -15y +1 = 14y -32 - y
Combine like terms on the right and left
-4 -15y = 13y -32
Now move the variables to one side and the constants to the other.
Subtract 13y from both sides
-4 -28y = -32
Add 4 to both sides
-28y = -28
Divide both sides by -28
y = 1
Answer:
<u>y'= 5x^4 + 5^x In(5)</u>
Step-by-step explanation:
<u>Differentiate</u><u> </u><u>with </u><u>Respect</u><u> </u><u>to</u><u> </u><u>x</u>
<u>f(</u><u>x)</u><u>'</u><u>=</u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>In(</u><u>5</u><u>^</u><u>x</u><u>)</u>
<u>f(</u><u>x)</u><u>'</u><u>=</u><u> </u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>x </u><u>In(</u><u>5</u><u>)</u>
<u>with </u><u>respect</u><u> </u><u>to </u><u>x,</u><u> </u><u>we </u><u>have</u>
<u>y'=</u><u> </u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>y </u><u>In(</u><u>5</u><u>)</u>
<u>y'=</u><u> </u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>5</u><u>^</u><u>x</u><u> </u><u>In(</u><u>5</u><u>)</u>