For the most accurate measurement, you should stand so that you are on a piece of ground that is about level with the ground at the tree's base, not higher or lower. Your view of the tree should be as unobstructed as possible
To finish the demonstration that the quadrilateral JKLM is a rhombus we need to prove that side JK is congruent with side LM.
The length of a segment with endpoints (x1, y1) and (x2, y2) is calculated as follows:
![\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D)
Substituting with points L(1,6) and M(4,2) we get:
![\begin{gathered} LM=\sqrt[]{(4-1)^2+(2-6)^2} \\ LM=\sqrt[]{3^2+(-4)^2} \\ LM=\sqrt[]{9+16^{}} \\ LM=5 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20LM%3D%5Csqrt%5B%5D%7B%284-1%29%5E2%2B%282-6%29%5E2%7D%20%5C%5C%20LM%3D%5Csqrt%5B%5D%7B3%5E2%2B%28-4%29%5E2%7D%20%5C%5C%20LM%3D%5Csqrt%5B%5D%7B9%2B16%5E%7B%7D%7D%20%5C%5C%20LM%3D5%20%5Cend%7Bgathered%7D)
Given that opposite sides are parallel, all sides have the same length, and, from the diagram, the quadrilateral is not a square, we conclude that it is a rhombus.
Formula is bh/2.
So, 23*19/2 = 218.5
25% of 30 = 7.5
Hope this helps idk if it does tho