Answer:
i cannot help you get the answer to the question without more information but i can explain how to solve it, what your question is, is called a "permutation"
Step-by-step explanation:
To calculate permutations, use the equation nPr, where n is the total number of choices and r is the amount of items being selected. To solve this equation, use the equation nPr = n! / (n - r)! , an exclimation point means the factorial, say we need the factorial of 4, we would do this 4x3x2x1 go left to right, and it is not all at once. you multiply 4 times 3 which equals 12, then multiply 12 times 2... so on and so forth
Answer:
(a)
(b) 
Step-by-step explanation:
It is given that
.
(a)
(b)
![[\because \sin x=\dfrac{1}{\csc x}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Csin%20x%3D%5Cdfrac%7B1%7D%7B%5Ccsc%20x%7D%5D)

Therefore,
.
Answer:
Month 1 : 0.002988
Month 2: 0.00299692814
Month 3: 0.00300588297
Step-by-step explanation:
Since we're only finding the interest for the first three months, it's easy to do it by performing the simple interest formula. But first, we need divide 3 by 12, since we calculate interest using years. 3/12 = 1/4 = 0.25
The standard simple interest calculation is done by multiplying the starting amount, by the interest, by the time, then dividing by 100 to put it into a percentage.
1 month = 1/12 or approximately 0.083 of the year.
Let's say P = 1. For the first month, it will be 1 x 3.6 x 0.083 = 0.2988 / 100
The second month, (1 + 0.002988) * 3.6 * 0.083 = 0.299692814 / 100
The third month, (1.002988 + 0.00299692814) x 3.6 x 0.083 = 0.300588297/100
Given the initial amount be 1, those would be the periodic interest rate during the first three months.
Answer: 
Step-by-step explanation:
<u>Given equation</u>

<u>Subtract 9 on both sides</u>


<u>Conclusion</u>


Hope this helps!! :)
Please let me know if you have any questions
Answer:
p =
, q = 9
Step-by-step explanation:
4x² + 12x ( factor out 4 from each term )
= 4(x² + 3x)
Using the method of completing the square
add/subtract ( half the coefficient of the x- term)² to x² + 3x
= 4(x² + 2(
)x +
-
)
= 4(x +
)² - 4 × 
= 4(x +
)² - 9