1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sertanlavr [38]
3 years ago
14

I don’t get what it means by “Identify the graphs of proportional relationships.”

Mathematics
1 answer:
Ymorist [56]3 years ago
5 0
C and B is proportional relationships , because the proportional relationships always start at zero and the line must be straight !
You might be interested in
Find the median from given data 2,5,1,6,3​
weqwewe [10]

Answer:  Median = 3

Explanation:

Sort the numbers to get {1,2,3,5,6}. The middle most number is 3, so that's the median.

4 0
3 years ago
Write the equation, in standard form, for the following relation. B = {(x, y ): (2, 3), (4, 4), (6, 5), . . .}
Rashid [163]
(2,3)(4,4)
slope = (4 - 3) / (4 - 2) = 1/2

y = mx + b
slope(m) = 1/2
(2,3)...x = 2 and y = 3
sub and find b, the y int
3 = 1/2(2) + b
3 = 1 + b
3 - 1 = b
2 = b

ur equation is : y = 1/2x + 2...but we need it in standard form

y = 1/2x + 2
-1/2x + y = 2 ...multiply by -2
x - 2y = -4 <== standard form
8 0
3 years ago
PLEASE HELP FAST!! WILL MARK AS BRAINLIEST IF GIVEN GOID ANSWER....​
lyudmila [28]

Answer:

x = 36

y = 37.95

Step-by-step explanation:

By geometric mean property:

{12}^{2}  = 4 \times x \\  \\ 144 = 4 \times x \\  \\ x =  \frac{144}{4}  \\  \\ x = 36 \\  \\

By Pythagoras Theorem:

{y}^{2}  =  {12}^{2}  +  {x}^{2} \\  \\  {y}^{2}  =  {12}^{2}  +  {36}^{2}  \\  \\  {y}^{2}  = 144 + 1296 \\  \\  {y}^{2}  = 1440 \\  \\ y =  \sqrt{1440}  \\  \\  y = 37.95

5 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
6th grade math i mark as brainliest​
VLD [36.1K]

step (1) 32+23*4 =124 step (2) 9+23*4= 101  step (3) 9+9*4=45 step 4 9+35=44

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • Solve for m.<br> 7<br> D= (m - 64)<br> 2<br> ==
    12·1 answer
  • I need help, Please hurry, It's timed.
    7·2 answers
  • A certain unsavory bar for poker-playing dogs is attended by only two types of dogs: "good dogs" and "bad dogs." For a randomly
    8·2 answers
  • The number of students in Mrs. Patrick's piano class decreased by 15% in 2 years to 17 students. How many students did she have
    11·1 answer
  • What is the equivalent fraction for 64% written in simplest form?
    6·2 answers
  • A researcher selects two samples of 64 participants each. In the first sample, the population mean was 10 and the variance was 1
    10·1 answer
  • Order from least to greatest: [10,-5,3,16,-1,0,1]
    13·2 answers
  • Forgot how to do this pls help ​
    7·1 answer
  • Paula wants to divide 480 tomatoes
    8·2 answers
  • Determine the most convenient method to graph the following line.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!