Explanation: Plants using photosynthesis will take in carbon dioxide from the air, bring up water from the roots, and use sunlight as the energetic source to create sugar from water and carbon dioxide. Plants contain a molecule called chlorophyll, and the chlorophyll is what absorbs the sunlight
Answer:
330 mL of (NH₄)₂SO₄ are needed
Explanation:
First of all, we determine the reaction:
(NH₄)₂SO₄ + 2NaOH → 2NH₃ + 2H₂O + Na₂SO₄
We determine the moles of base:
(First, we convert the volume from mL to L) → 62.6 mL . 1L/1000 mL = 0.0626L
Molarity . volume (L) = 2.31 mol/L . 0.0626 L = 0.144 moles
Ratio is 2:1. Therefore we make a rule of three:
2 moles of hydroxide react with 1 mol of sulfate
Then, 0.144 moles of NaOH must react with (0.144 .1) /2 = 0.072 moles
If we want to determine the volume → Moles / Molarity
0.072 mol / 0.218 mol/L = 0.330 L
We convert from L to mL → 0.330L . 1000 mL/1L = 330 mL
I believe its B. <span>The chemical formula for water H2O represents 2 hydrogen and 1 oxygen in the compound. </span>
The question is incomplete, the complete question is;
Choose the aqueous solution that has the highest boiling point. These are all solutions of nonvolatile solutes and you should assume ideal van't Hoff factors where applicable. 0.100 m C6H12O6 0.100 m AlCl3 0.100 m NaCl 0.100 m MgCl2 They all have the same boiling point.
Answer:
AlCl3 0.100 m
Explanation:
Let us remember that the boiling point elevation is given by;
ΔTb = Kb m i
Where;
ΔTb = boiling point elevation
Kb = boiling point constant
m = molality of the solution
i = Van't Hoff factor
We can see from the question that all the solutions possess the same molality, ΔTb now depends on the value of the Van't Hoff factor which in turn depends on the number of particles in solution.
AlCl3 yields four particles in solution, hence ΔTb is highest for AlCl3 . The solution having the highest value of ΔTb also has the highest boiling point.
You just have to find a conversion from amu to grams. For every 1 amu, there is 1.66×10⁻²⁴ grams. Thus,
Mass of proton = 1.0073 amu * 1.66×10⁻²⁴ grams/amu = 1.672×10⁻²⁴ grams
Since a proton is spherical in shape, the volume would be:
Volume = 1/6*πd³ = 1/6*π(1.0×10⁻¹⁵ cm)³ = 5.236×10⁻⁴⁶ cm³
Therefore, the density is equal to
Density = Mass/Volume = 1.672×10⁻²⁴ grams/5.236×10⁻⁴⁶ cm³
Density = 3.2×10²¹ g/cm³