Answer:
One solution.
Step-by-step explanation:
To determine the number of possible solutions for a triangle with A = 113° , a = 15, and b = 8, we're going to use the law of sines which states that: "<em>When we divide side a by the sine of angle A it is equal to side b divided by the sine of angle B, and also equal to side c divided by the sine of angle C</em>".
Using the law of sines we have:


Solving for B, we have:

∠B = 29.4°
Therefore, the measure of the third angle is: ∠C = 37.6°
There is another angle whose sine is 0.4909 which is 180° - 29.4° = 150.6 degrees. Given that the sum of all three angles of any triangle must be equal to 180 deg, we can't have a triangle with angle B=113° and C=150.6°, because B+C>180.
Therefore, there is one triangle that satisfies the conditions.
it is either -2, 1, 4, 5 or if it is absolute value then it is 1, -2, 4, 5 . let me know if that helps.
By combining like terms, the answer is a
Answer:
The following points are not arranged in a parallelogram or rectangle order.
Step-by-step explanation:
Well first we need to graph the following.
A(1,1) B(2,2) C(3,3) D(4,4)
By looking at the image below we can tell it is not any shape, it’s not a parallelogram or a rectangle.
It is a line with a slope of 1 or x.