1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timurjin [86]
2 years ago
5

Find the particular solution of the differential equation? /=5^3+9^2, when =1, =8

Mathematics
1 answer:
kipiarov [429]2 years ago
3 0

Answer:

\displaystyle s = \frac{5t^4}{4} + \frac{9}{t} - \frac{9}{4}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Derivatives

Derivative Notation

Solving Differentials - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Step-by-step explanation:

*Note:

Ignore the Integration Constant C on the left hand side of the differential equation when integrating.

<u>Step 1: Define</u>

\displaystyle \frac{ds}{dt} = 5t^3 + \frac{9}{t^2}

t = 1

s = 8

<u>Step 2: Integrate</u>

  1. [Derivative] Rewrite [Leibniz's Notation]:                                                     \displaystyle ds = (5t^3 + \frac{9}{t^2})dt
  2. [Equality Property] Integrate both sides:                                                     \displaystyle \int {} \, ds = \int {(5t^3 + \frac{9}{t^2})} \, dt
  3. [Left Integral] Reverse Power Rule:                                                             \displaystyle s = \int {(5t^3 + \frac{9}{t^2})} \, dt
  4. [Right Integral] Rewrite [Integration Property - Addition]:                           \displaystyle s = \int {5t^3} \, dt + \int {\frac{9}{t^2}} \, dt
  5. [Right Integrals] Rewrite [Integration Property - Multiplied Constant]:     \displaystyle s = 5\int {t^3} \, dt + 9\int {\frac{1}{t^2}} \, dt
  6. [Right Integrals] Rewrite [Exponential Rule - Rewrite]:                               \displaystyle s = 5\int {t^3} \, dt + 9\int {t^{-2}} \, dt
  7. [Right Integrals] Reverse Power Rule:                                                         \displaystyle s = 5(\frac{t^4}{4}) + 9(\frac{t^{-1}}{-1}) + C
  8. [Right Integrals] Rewrite [Exponential Rule - Rewrite]:                               \displaystyle s = 5(\frac{t^4}{4}) + 9(\frac{1}{t}) + C
  9. Multiply:                                                                                                         \displaystyle s = \frac{5t^4}{4} + \frac{9}{t} + C

<u>Step 3: Solve</u>

  1. Substitute in variables:                                                                                 \displaystyle 8 = \frac{5(1)^4}{4} + \frac{9}{1} + C
  2. Evaluate exponents:                                                                                     \displaystyle 8 = \frac{5}{4} + \frac{9}{1} + C
  3. Divide:                                                                                                           \displaystyle 8 = \frac{5}{4} + 9 + C
  4. Add:                                                                                                               \displaystyle 8 = \frac{41}{4} + C
  5. [Subtraction Property of Equality] Isolate <em>C</em>:                                               \displaystyle \frac{-9}{4} = C
  6. Rewrite:                                                                                                          \displaystyle C = \frac{-9}{4}

Particular Solution: \displaystyle s = \frac{5t^4}{4} + \frac{9}{t} - \frac{9}{4}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Differentials Equations and Slope Fields

Book: College Calculus 10e

You might be interested in
Help please I Give brainliest and be serious please.fast
NemiM [27]
Hmm i don’t know but quizlet should have the answers ❤️
4 0
3 years ago
Help please!!!!!!!!!!!!!
dedylja [7]

Answer:

position         1             5             8                12               19             25

term              -8            8             20             36               64            88

Step-by-step explanation:

(n - 1) is position ( n ∈ N)

d is the distance between the numbers in the sequence

a1 is the first number in the sequence

we have the fuction: a(n) = a1 + (n - 1)d

see in the table, with position = 1, term = -8 => a1 + d = -8

                                    position = 25, term = 88 => a1 + 25d = 88

=> we have: a1 + d = -8

                     a1 + 25d = 88

=> a1 = -12

    d = 4

=> a(n) = -12 + 4(n - 1)

=> term = 8, position = (8 + 12)/4 = 5

    position = 8, term = -12 + 4.8 = 20

    term = 36, position = (36 + 12)/4 = 12

    position = 19, term = -12 + 4.19 = 64

5 0
3 years ago
Read 2 more answers
Click on the volume of this rectangular prism.
gtnhenbr [62]

Answer: 192 cubic inches

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Can someone do this for me?
EastWind [94]
Do you know your places? Like tenth place?
6 0
3 years ago
Given x=-3, y=6, and z=-4 xz/-2y
zimovet [89]

Answer:

-1

Step-by-step explanation:

sub in the values of x, y and z into the equation

you get:

(-3)(-4)/(-2)(6)

= 12/-12

= -1

8 0
3 years ago
Read 2 more answers
Other questions:
  • In the equation for a confidence interval, the sample size is located in the denominator underneath the radical sign. What happe
    14·1 answer
  • Point A is located at negative 5 over 8 and point B is located at negative 2 over 8 . What is the distance between points A and
    10·2 answers
  • Explain when each method(graphing, substitution,linear combinations) is a good method to find a solution to a system of equation
    15·2 answers
  • A circle is inscribed in a square. The area of the circle is 507 square inches. What is the length of each side of the square? U
    8·1 answer
  • 98 POINTS EASY
    6·2 answers
  • 9+8=17 what number sentence shows the commutative property of addition
    10·1 answer
  • Can somebody please help me with this question?
    12·2 answers
  • What two numbers multiply to 5 and add up to -6
    9·1 answer
  • What is the slope of the line in the graph? <br><br> -4/3<br> -3/4<br> 3/4<br> 4/3
    5·1 answer
  • Help now pls thank u
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!