1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timurjin [86]
3 years ago
5

Find the particular solution of the differential equation? /=5^3+9^2, when =1, =8

Mathematics
1 answer:
kipiarov [429]3 years ago
3 0

Answer:

\displaystyle s = \frac{5t^4}{4} + \frac{9}{t} - \frac{9}{4}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Derivatives

Derivative Notation

Solving Differentials - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Step-by-step explanation:

*Note:

Ignore the Integration Constant C on the left hand side of the differential equation when integrating.

<u>Step 1: Define</u>

\displaystyle \frac{ds}{dt} = 5t^3 + \frac{9}{t^2}

t = 1

s = 8

<u>Step 2: Integrate</u>

  1. [Derivative] Rewrite [Leibniz's Notation]:                                                     \displaystyle ds = (5t^3 + \frac{9}{t^2})dt
  2. [Equality Property] Integrate both sides:                                                     \displaystyle \int {} \, ds = \int {(5t^3 + \frac{9}{t^2})} \, dt
  3. [Left Integral] Reverse Power Rule:                                                             \displaystyle s = \int {(5t^3 + \frac{9}{t^2})} \, dt
  4. [Right Integral] Rewrite [Integration Property - Addition]:                           \displaystyle s = \int {5t^3} \, dt + \int {\frac{9}{t^2}} \, dt
  5. [Right Integrals] Rewrite [Integration Property - Multiplied Constant]:     \displaystyle s = 5\int {t^3} \, dt + 9\int {\frac{1}{t^2}} \, dt
  6. [Right Integrals] Rewrite [Exponential Rule - Rewrite]:                               \displaystyle s = 5\int {t^3} \, dt + 9\int {t^{-2}} \, dt
  7. [Right Integrals] Reverse Power Rule:                                                         \displaystyle s = 5(\frac{t^4}{4}) + 9(\frac{t^{-1}}{-1}) + C
  8. [Right Integrals] Rewrite [Exponential Rule - Rewrite]:                               \displaystyle s = 5(\frac{t^4}{4}) + 9(\frac{1}{t}) + C
  9. Multiply:                                                                                                         \displaystyle s = \frac{5t^4}{4} + \frac{9}{t} + C

<u>Step 3: Solve</u>

  1. Substitute in variables:                                                                                 \displaystyle 8 = \frac{5(1)^4}{4} + \frac{9}{1} + C
  2. Evaluate exponents:                                                                                     \displaystyle 8 = \frac{5}{4} + \frac{9}{1} + C
  3. Divide:                                                                                                           \displaystyle 8 = \frac{5}{4} + 9 + C
  4. Add:                                                                                                               \displaystyle 8 = \frac{41}{4} + C
  5. [Subtraction Property of Equality] Isolate <em>C</em>:                                               \displaystyle \frac{-9}{4} = C
  6. Rewrite:                                                                                                          \displaystyle C = \frac{-9}{4}

Particular Solution: \displaystyle s = \frac{5t^4}{4} + \frac{9}{t} - \frac{9}{4}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Differentials Equations and Slope Fields

Book: College Calculus 10e

You might be interested in
Area is 180,length is 1 1/4,what is the width
rusak2 [61]
180 is the area and the length is 1.25 so we need to find the width. We need to divide 180/1.25 which is 144.
144*1.25 is 180
The width is 
144
7 0
3 years ago
Read 2 more answers
40% of what number is 18?
vladimir1956 [14]

Answer:

45

40 percent (calculated percentage %) of what number equals 18? Answer: 45.

3 0
3 years ago
Read 2 more answers
Find the midpoint of the segment with the given endpoints.<br><br><br> M(–2, 1) and N(–3, 2)
mafiozo [28]
\bf ~~~~~~~~~~~~\textit{middle point of 2 points }&#10;\\\\&#10;M(\stackrel{x_1}{-2}~,~\stackrel{y_1}{1})\qquad &#10;N(\stackrel{x_2}{-3}~,~\stackrel{y_2}{2})&#10;\qquad&#10;%   coordinates of midpoint &#10;\left(\cfrac{ x_2 +  x_1}{2}~~~ ,~~~ \cfrac{ y_2 +  y_1}{2} \right)&#10;\\\\\\&#10;\left( \cfrac{-3-2}{2}~~,~~\cfrac{2+1}{2} \right)\implies \left(-\frac{5}{2}~,~\frac{3}{2}  \right)
5 0
3 years ago
Read 2 more answers
True or false. The graph below is the graph of a function?
suter [353]

Answer:

True I think

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
The look-out point of a tower is 60 feet above the ground. A man observes a fountain from the look-out point. The angle of depre
Mademuasel [1]
27.98ft

You can get this by using the tangent formula. The answer exactly expressed is 60tan25. 
5 0
3 years ago
Other questions:
  • Convert 1 3/4 into a decimal
    6·2 answers
  • The lenghth of a rectangle is 6 cenimeters and its area is ( 6x 18) square centimerters. write an expression for the wighth
    12·1 answer
  • Please answer asap!!!!!!!!
    9·2 answers
  • Will give brainliest answer
    9·2 answers
  • A translation is performed on the pre-image LMN. the coordinates of l are (-2,0)
    7·1 answer
  • Before 1995, three-digit area codes for the united states had the following restrictions:
    13·1 answer
  • How many meters in 1 kilometer
    6·2 answers
  • The equation y = ax describes the graph of a line. If the value of a is positive, the line:
    7·2 answers
  • Helpppppp pleaseeeeeeee
    7·2 answers
  • 1. What number is 20% of 40?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!