1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timurjin [86]
2 years ago
5

Find the particular solution of the differential equation? /=5^3+9^2, when =1, =8

Mathematics
1 answer:
kipiarov [429]2 years ago
3 0

Answer:

\displaystyle s = \frac{5t^4}{4} + \frac{9}{t} - \frac{9}{4}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Derivatives

Derivative Notation

Solving Differentials - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Step-by-step explanation:

*Note:

Ignore the Integration Constant C on the left hand side of the differential equation when integrating.

<u>Step 1: Define</u>

\displaystyle \frac{ds}{dt} = 5t^3 + \frac{9}{t^2}

t = 1

s = 8

<u>Step 2: Integrate</u>

  1. [Derivative] Rewrite [Leibniz's Notation]:                                                     \displaystyle ds = (5t^3 + \frac{9}{t^2})dt
  2. [Equality Property] Integrate both sides:                                                     \displaystyle \int {} \, ds = \int {(5t^3 + \frac{9}{t^2})} \, dt
  3. [Left Integral] Reverse Power Rule:                                                             \displaystyle s = \int {(5t^3 + \frac{9}{t^2})} \, dt
  4. [Right Integral] Rewrite [Integration Property - Addition]:                           \displaystyle s = \int {5t^3} \, dt + \int {\frac{9}{t^2}} \, dt
  5. [Right Integrals] Rewrite [Integration Property - Multiplied Constant]:     \displaystyle s = 5\int {t^3} \, dt + 9\int {\frac{1}{t^2}} \, dt
  6. [Right Integrals] Rewrite [Exponential Rule - Rewrite]:                               \displaystyle s = 5\int {t^3} \, dt + 9\int {t^{-2}} \, dt
  7. [Right Integrals] Reverse Power Rule:                                                         \displaystyle s = 5(\frac{t^4}{4}) + 9(\frac{t^{-1}}{-1}) + C
  8. [Right Integrals] Rewrite [Exponential Rule - Rewrite]:                               \displaystyle s = 5(\frac{t^4}{4}) + 9(\frac{1}{t}) + C
  9. Multiply:                                                                                                         \displaystyle s = \frac{5t^4}{4} + \frac{9}{t} + C

<u>Step 3: Solve</u>

  1. Substitute in variables:                                                                                 \displaystyle 8 = \frac{5(1)^4}{4} + \frac{9}{1} + C
  2. Evaluate exponents:                                                                                     \displaystyle 8 = \frac{5}{4} + \frac{9}{1} + C
  3. Divide:                                                                                                           \displaystyle 8 = \frac{5}{4} + 9 + C
  4. Add:                                                                                                               \displaystyle 8 = \frac{41}{4} + C
  5. [Subtraction Property of Equality] Isolate <em>C</em>:                                               \displaystyle \frac{-9}{4} = C
  6. Rewrite:                                                                                                          \displaystyle C = \frac{-9}{4}

Particular Solution: \displaystyle s = \frac{5t^4}{4} + \frac{9}{t} - \frac{9}{4}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Differentials Equations and Slope Fields

Book: College Calculus 10e

You might be interested in
Use the table to work out the values of a , b , c , and d .​
slavikrds [6]

Answer:

a = 10, b = 6, c = 2, d = 0

Step-by-step explanation:

Substitute the appropriate values of x into the equation and evaluate

x = - 3 : y = 4 - 2(- 3) = 4 + 6 = 10 → a

x = - 1 : y = 4 - 2(- 1) = 4 + 2 = 6 → b

x = 1 : y = 4 - 2(1) = 4 - 2 = 2 → c

x = 2 : y = 4 - 2(2) = 4 - 4 = 0 → d

5 0
2 years ago
Read 2 more answers
Seeds are often treated with fungicides to protect them in poor-draining, wet environments. A small-scale trial, involving six t
alukav5142 [94]

Answer:

0.0076 = 0.76% probability that all five plants emerged from treated seeds

Step-by-step explanation:

The plants were chosen without replacement, which means that the hypergeometric distribution is used to solve this question.

Hypergeometric distribution:

The probability of x successes is given by the following formula:

P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}

In which:

x is the number of successes.

N is the size of the population.

n is the size of the sample.

k is the total number of desired outcomes.

Combinations formula:

C_{n,x} is the number of different combinations of x objects from a set of n elements, given by the following formula.

C_{n,x} = \frac{n!}{x!(n-x)!}

In this question:

6 + 6 = 12 seeds, which means that N = 12

6 treated, which means that k = 6

Five sprouted, which means that n = 5

What is the probability that all five plants emerged from treated seeds?

This is P(X = 5). So

P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}

P(X = 5) = h(5,12,5,6) = \frac{C_{6,5}*C_{6,0}}{C_{12,5}} = 0.0076

0.0076 = 0.76% probability that all five plants emerged from treated seeds

3 0
3 years ago
L.C.M of x2 + 3x + 2 and x2 + 4x + 3
lutik1710 [3]

Answer:

Step-by-step explanation:

x^2 + 3x + 2 = (x+1)(x+2)

x^2 + 4x + 3 = (x+1)(x+3)

LCM = (x+1)(x+2)(x+3) = (x^2 + 3x + 2) (x+3) = x^3 + 6x^2 + 11x + 6

4 0
3 years ago
Read 2 more answers
Select the true statement(s):
Gre4nikov [31]

Answer:

The true statement is C because between -4 and 14 is 10

Step-by-step explanation:

Plz mark brainliest

6 0
2 years ago
Read 2 more answers
PLS HELP
Naddik [55]
I can give you the answer only for the first question, but this one will definitely help you and bring you the points you need. The  amount of tax that is paid on the computer is <span>0.08x, where </span>x is the original cost
and 8% is the tax rate. Hope you still need because that's really works.

3 0
2 years ago
Read 2 more answers
Other questions:
  • Need help saying Korean ​
    7·1 answer
  • Pls help what is the range of y=√x+7+5?
    8·2 answers
  • (a-1) a2-b2/1-ab+2(a-b)/2b a=2, b=-1
    7·2 answers
  • The function f(x)=1+1.5ln(x+1) models the average number of free-throws a basketball player can make consecutively during practi
    10·1 answer
  • Baker sammy helppppp​
    7·1 answer
  • Please help it's the SLOPE
    5·2 answers
  • What is the answer to 2/3 of 5
    7·1 answer
  • Please help this is a big test and I’m confused
    15·2 answers
  • 3x-3(4+x)=3/4(3x+2)-1<br><br> PLEASE FIND X
    10·1 answer
  • Help me on this math thing
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!