<span>Answer: -4.88691778Solution:1.Write down the number of degrees you want to convert to radians Given Degree = -280° The formula to convert degrees to radian measure is:Radian = degree x π/180 2. Multiply the number of degrees by π/180. Think of it like multiplying two fractions: the first fraction has the number of degrees in the numerator and "1" in the denominator, and the second fraction has π in the numerator and 180 in the denominator. -280 x π/180 = -280π/1803. Find the largest number that can evenly divide into the numerator and denominator of each fraction and use it to simplify each fraction. The largest number for 280 is 20.-280 x π/180 = -280π/180 ÷ 20/20 = -14π /9 4. Then multiply the numerator by 3.14159 because pi or π is equivalent to 3.14159, -14x 3.14159= -43.982265. To get the radian measure, we will divide -43.98226 by 9. -43.98226/9= -4.88691778
</span>
Answer: :o I FINALLY MADE IT
(5, 2)
x = 5
y = 2
Step-by-step explanation:
First, I graphed both equations. They meet at the points (5,2) and (2,5). Because y < 5, the solution is (5, 2)
<em>Hope it helps <3</em>
F(x) = 18-x^2 is a parabola having vertex at (0, 18) and opening downwards.
g(x) = 2x^2-9 is a parabola having vertex at (0, -9) and opening upwards.
By symmetry, let the x-coordinates of the vertices of rectangle be x and -x => its width is 2x.
Height of the rectangle is y1 + y2, where y1 is the y-coordinate of the vertex on the parabola f and y2 is that of g.
=> Area, A
= 2x (y1 - y2)
= 2x (18 - x^2 - 2x^2 + 9)
= 2x (27 - 3x^2)
= 54x - 6x^3
For area to be maximum, dA/dx = 0 and d²A/dx² < 0
=> 54 - 18x^2 = 0
=> x = √3 (note: x = - √3 gives the x-coordinate of vertex in second and third quadrants)
d²A/dx² = - 36x < 0 for x = √3
=> maximum area
= 54(√3) - 6(√3)^3
= 54√3 - 18√3
= 36√3.
Answer:
0.986
Step-by-step explanation:
2.5 times 0.986=2.465