Answer:
37.97
Step-by-step explanation:
y=-0.00001(37000)+0.97
=-37+0.97
=37.97
<span>(4 - 8i)(2 - 7i)
Use the method FOIL
8 - 28i - 16i + 56i^2
Subtract 16i from -28i
Final Answer: 8 - 44i + 56i^2</span>
Answer:
Part A) Option A. QR= 3 cm
Part B) Option B. SV=6.5 cm
Step-by-step explanation:
step 1
<u>Find the length of segment QR</u>
we know that
If two triangles are similar, then the ratio of its corresponding sides is proportional and its corresponding angles are congruent
so
In this problem Triangle QRW and Triangle QSV are similar by AA Similarity Theorem
so

we have
---> because S is the midpoint QT (QS=TS)
--->because V is the midpoint QU (QW+WV=VU)
--->because V is the midpoint QU (QV=VU)
substitute the given values

solve for QR

step 2
Find the length side SV
we know that
The <u><em>Mid-segment Theorem</em></u> states that the mid-segment connecting the midpoints of two sides of a triangle is parallel to the third side of the triangle, and the length of this mid-segment is half the length of the third side
so
In this problem
S is the mid-point side QT and V is the mid-point side QU
therefore
SV is parallel to TU
and

so

1) 2x + 3 = 2x + 3
This works because if you solve it, you will get either x = x or 3 = 3 which are always true, so x, can have an infinite number of solutions
2) 3(x + 4) = 3x + 11
This has no solution because if you solve it, you're gonna get 12 = 11 and that is NEVER true. Whatever x is, 11 cannot equal 12!
Answer:
f¯¹(x) = 23/ (6x + 3)
Step-by-step explanation:
f(x) = (23 – 3x)/6x
The inverse, f¯¹, for the above function can be obtained as follow:
f(x) = (23 – 3x)/6x
Let y be equal to f(x)
Therefore, f(x) = (23 – 3x)/6x will be written as:
y = (23 – 3x)/6x
Next, interchange x and y.
This is illustrated below:
y = (23 – 3x)/6x
x = (23 – 3y)/6y
Next, make y the subject of the above expression. This is illustrated below:
x = (23 – 3y)/6y
Cross multiply
6xy = 23 – 3y
Collect like terms
6xy + 3y = 23
Factorise
y(6x + 3) = 23
Divide both side by (6x + 3)
y = 23/ (6x + 3)
Finally, replace y with f¯¹(x)
y = 23/ (6x + 3)
f¯¹(x) = 23/ (6x + 3)
Therefore, the inverse, f¯¹, for the function f(x) = (23 – 3x)/6x is
f¯¹(x) = 23/ (6x + 3)