<h3>
Answer:</h3>
1.827 × 10²⁴ molecules H₂S
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Compounds</u>
- Writing Compounds
- Acids/Bases
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
103.4 g H₂S (Sulfuric Acid)
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of H - 1.01 g/mol
Molar Mass of S - 32.07 g/mol
Molar Mass of H₂S - 2(1.01) + 32.07 = 34.09 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 4 sig figs.</em>
1.82656 × 10²⁴ molecules H₂S ≈ 1.827 × 10²⁴ molecules H₂S
I check all of them. most of them correct but one
in question 6, the answer is the third choice. remember to find the neutrons, you take the atomic mass minus the atomic number. 38 - 18= 20
Answer: limiting reactant controls the amount of product formed in a chemical reaction.
* Hopefully this answers your question :) Mark me the brainliest:)
~ 234483279c20~
Answer:
C. Graph C
Explanation:
We have a mixture of water and ice.
At 0 °C they are at equilibrium.
water-to-ice rate = ice-to-water rate
Next, we lower the temperature to -3 °C — just slightly below freezing.
The water will slowly turn to ice.
The water-to-ice rate will be slightly faster than the ice-to-water rate.
The purple bar will be slightly higher than the blue bar.
Graph C best represents the relative rates
A. is wrong. The ice-to-water rate is faster, so the water is melting. The temperature is slightly above freezing (say, 3 °C).
B. is wrong. The two rates are equal, so the temperature is 0 °C.
D. is wrong. The water-to-ice rate (freezing) is much greater than the ice-to-water rate, so the temperature is well below freezing( say, -10 °C).
0.35 moles carbon dioxide (6.022 X 10^23/1 mole CO2) = 2.1 X 10^23 atoms of
<span>
carbon dioxide
</span>