For the given molecule, we are asked to give-
- The electron configuration of an isolated B atom
- The electron configuration of an isolated F atom
- Hybrid orbitals should be constructed on the B atom to make the B–F bonds in Boron tri flouride
- valence orbitals, if any, remain unhybridized on the B atom.
- The electron configuration of an isolated B atom:
as atomic number of B is 5
electronic configuration will be [He] 2s² 2p¹
- The electron configuration of an isolated F atom:
as atomic number of F is 9
electronic configuration will be [He] 2s² 2p5
- Hybrid orbitals should be constructed on the B atom to make the B–F bonds in Boron tri flouride will be sp2.
as the one s and two of p orbital from the valance shell will hybridised to make 3 hybrid orbital of B resulting in 3 B-F bonds.
- valence orbitals, if any, remain unhybridized on the B atom will be 1
To know more about hybrisisation:
brainly.com/question/23038117
#SPJ4
I just took a test with this question and got the answer wrong for saying ethane. The correct answer is propane.
Answer:
1.72 M
Explanation:
Molarity is the molar concentration of a solution. It can be calculated using the formula a follows:
Molarity = number of moles (n? ÷ volume (V)
According to the information provided in this question, the solution has 58.7 grams of MgCl2 in 359 ml of solution.
Using mole = mass/molar mass
Molar mass of MgCl2 = 24 + 35.5(2)
= 24 + 71
= 95g/mol
mole = 58.7g ÷ 95g/mol
mole = 0.618mol
Volume of solution = 359ml = 359/1000 = 0.359L
Molarity = 0.618mol ÷ 0.359L
Molarity = 1.72 M
1 mole Hg ---------------- 6.02x10²³ atoms
?? ------------------------- 1.30 x10⁷ atoms
1.30x10⁷ x 1 / 6.02x10²³ =
= 1.30x10⁷ / 6.02x10²³ => 2.159x10⁻¹⁷ moles
hope this helps!