Answer:
Step-by-step explanation:
a) D/280 = tan(90 - 6)
D = 280tan84 = 2,664 ft
b) D/280 = tan(90 - 16)
D = 280tan74 = 976 ft
ship speed = (2664 - 976) / 43 = 39.2 ft/s
A and C are the correct answers
The given expression is ![\frac{\sqrt{2}}{\sqrt[3]{2}}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%20%20%20%20)
This can be simplified using the radical properties as below
![\\\ \frac{\sqrt{2}}{\sqrt[3]{2}}=\frac{2^{\frac{1}{2}}}{2^\frac{1}{3}} \\\\ \frac{\sqrt{2}}{\sqrt[3]{2}}=\frac{2^{\frac{1}{2}}}{2^\frac{1}{3}} \\\\](https://tex.z-dn.net/?f=%20%5C%5C%5C%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%3D%5Cfrac%7B2%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B2%5E%5Cfrac%7B1%7D%7B3%7D%7D%20%5C%5C%5C%5C%20%20%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%3D%5Cfrac%7B2%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B2%5E%5Cfrac%7B1%7D%7B3%7D%7D%20%5C%5C%5C%5C%20)
Now using exponent properties we can write
![\\\ \frac{\sqrt{2}}{\sqrt[3]{2}}=\frac{2^{\frac{1}{2}}}{2^\frac{1}{3}}=2^{\frac{1}{2}-\frac{1}{3}} \\\\\frac{\sqrt{2}}{\sqrt[3]{2}}=2^{\frac{3-2}{6}}=2^\frac{1}{6}\\\\= \sqrt[6]{2}\\](https://tex.z-dn.net/?f=%20%5C%5C%5C%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%3D%5Cfrac%7B2%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B2%5E%5Cfrac%7B1%7D%7B3%7D%7D%3D2%5E%7B%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B1%7D%7B3%7D%7D%20%5C%5C%5C%5C%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%3D2%5E%7B%5Cfrac%7B3-2%7D%7B6%7D%7D%3D2%5E%5Cfrac%7B1%7D%7B6%7D%5C%5C%5C%5C%3D%20%5Csqrt%5B6%5D%7B2%7D%5C%5C%20)
Answer:
Option D
Step-by-step explanation:
We have the following variable definitions:
sofas: x
pillows: y
Pillows come in pairs so we have 2y pillows
The total order for all the possible combinations is:

The wholesaler requires a minimum of 4 items in each order from its retail customers. This means the retailers can order 4 or more.
Therefore the inequality is:

To graph this inequality, we graph the corresponding linear equation,
with a solid line and shade above.
The correct choice is D
See attachment