<span>Bodies have an energy in their interior that is equal to the internal kinetic energy. The internal energy is an extensive quantity that relates to the amount of matter in a given system of particles because it comprises all other forms of energy contained in the atoms of a given substance.</span>
Each of these ODEs is linear and homogeneous with constant coefficients, so we only need to find the roots to their respective characteristic equations.
(a) The characteristic equation for

is

which arises from the ansatz
.
The characteristic roots are
and
. Then the general solution is

where
are arbitrary constants.
(b) The characteristic equation here is

with a root at
of multiplicity 2. Then the general solution is

(c) The characteristic equation is

with roots at
, where
. Then the general solution is

Recall Euler's identity,

Then we can rewrite the solution as

or even more simply as

should be control variable