Answer:
See explanation below
Step-by-step explanation:
Since each time after the person gets off the scale, the reading is 2 lb the person's weight must be near the mean of
148-2, 151-2, 150-2, 152-2; that is to say, near the mean of 146, 149, 148, 150 = (146+149+148+150)/4 = 148.25
We could estimate the uncertainty as <em>the standard error SE
</em>
where
<em>s = standard deviation of the sample
</em>
<em>n = 4 sample size.
</em>
Computing s:
So, the uncertainty is 1.479/2 = 0.736
<em>It is not possible to estimate the bias, since it is the difference between the true weight and the mean, but we do not know the true weight.
</em>
Answer:
part 1) 0.78 seconds
part 2) 1.74 seconds
Step-by-step explanation:
step 1
At about what time did the ball reach the maximum?
Let
h ----> the height of a ball in feet
t ---> the time in seconds
we have

This is a vertical parabola open downward (the leading coefficient is negative)
The vertex represent a maximum
so
The x-coordinate of the vertex represent the time when the ball reach the maximum
Find the vertex
Convert the equation in vertex form
Factor -16

Complete the square


Rewrite as perfect squares

The vertex is the point 
therefore
The time when the ball reach the maximum is 25/32 sec or 0.78 sec
step 2
At about what time did the ball reach the minimum?
we know that
The ball reach the minimum when the the ball reach the ground (h=0)
For h=0



square root both sides


the positive value is

Answer:
7,515
Step-by-step explanation:
Answer:
-3
Step-by-step explanation:
Answer:
Step-by-step explanation:
? whats the question