Answer:
First statement is correct.
Step-by-step explanation:
If we add or subtract a constant to each term in a set: Mean will increase or decrease by the same constant. Standard Deviation will not change.
If we increase or decrease each term in a set by the same percent (multiply all terms by the constant): Mean will increase or decrease by the same percent. Standard Deviation will increase or decrease by the same percent.
For example:
Standard Deviation of a set: {1,1,4} will be the same as that of {5,5,8} as second set is obtained by adding 4 to each term of the first set.
That's because Standard Deviation shows how much variation there is from the mean. And when adding or subtracting a constant to each term we are shifting the mean of the set by this constant (mean will increase or decrease by the same constant) but the variation from the mean remains the same as all terms are also shifted by the same constant.
So according to this rule, statement (1) is sufficient to get new Standard Deviation, it'll be 30% less than the old.. As for statement (2) it's clearly insufficient as knowing mean gives us no help in getting new Standard Deviation.
Answer:
B
Step-by-step explanation:
x is alternate exterior angles and y is 180 - x
➡Answer: x=√(e^y-2)
❇Explanation:
Step1: Let f(x)=y,then
↪y=ln(x²+2)
Step2: Converting it into exponential form,
↪e^y=x²+2
↪x²=e^y-2
Step3: Taking square root of both sides,
↪x=√(e^y-2)
❇Note:
ln means log with base e.
So in step 2 , base e of ln (x²+2) goes to other side in the form e^y. That is simply the property of log I used there..
Hope this helps!
Answer:
20ft
Step-by-step explanation:
Let y(t) represent the level of water in inches at time t in hours. Then we are given ...
y'(t) = k√(y(t)) . . . . for some proportionality constant k
y(0) = 30
y(1) = 29
We observe that a function of the form
y(t) = a(t - b)²
will have a derivative that is proportional to y:
y'(t) = 2a(t -b)
We can find the constants "a" and "b" from the given boundary conditions.
At t=0
30 = a(0 -b)²
a = 30/b²
At t=1
29 = a(1 - b)² . . . . . . . . . substitute for t
29 = 30(1 - b)²/b² . . . . . substitute for a
29/30 = (1/b -1)² . . . . . . divide by 30
1 -√(29/30) = 1/b . . . . . . square root, then add 1 (positive root yields extraneous solution)
b = 30 +√870 . . . . . . . . simplify
The value of b is the time it takes for the height of water in the tank to become 0. It is 30+√870 hours ≈ 59 hours 29 minutes 45 seconds