Answer:
if you search on google different types of triangle and click on the top website yours will come up u just have to search it in the website
Answer:
x < 0 or x > 3
Step-by-step explanation:
First, we'll solve 5x - 11 < -11.
5x < 0 so x < 0.
As for 4x + 2 > 14, 4x > 12 which means x > 3.
Y-y1=m(x-x1)
y-8=7(x-(-6))
y-8=7(x+6)
y-8=7x+42
+8 +8
y=7x+50
Answer: 3 : 1
Step-by-step explanation:
We know that there are 48 kids in Elm street.
12 of them are boys, then the number of girls will be:
48 - 12 = 36
So there are 12 boys and 36 girls.
Then the ratio of girls to boys is 36:12
We can divide both numbers by the same number and we will get an equivalent ratio, if we divide by 12 in both sides, we have:
36/12 : 12/12
3 : 1
Then the ratio is 3 to 1.
Answer:
a) 
b) P(x>2) = 0.566
c) P(2<x<5) = 0.334
Step-by-step explanation:
Given 24% of U.S. adults say they are more likely to make purchases during a sales tax holiday
Probability 0f U.S. adults say they are more likely to make purchases during a sales tax holiday (p) = 0.24
n = 10
By using Poisson distribution
mean number of make purchases during a sales tax holiday
λ = np = 10 X 0.24 = 2.4
a)
The probability of getting exactly '2'
The probability 


b) The probability of getting more than '2'


= 0.090 + 0.2177+0.261 = 0.566
P(x>2) = 0.566
c) The probability of getting between two and five
P( 2<x<5) = P(x=3)+p(x=4) =
P(2<x<5) = 0.2090 + 0.125 = 0.334