<h2>
The smaller angle = 15° and The larger angle = 165° </h2>
Step-by-step explanation:
Let the smaller angle = x and
The larger angle = 10x + 15°
To find, the measure of each angle = ?
We know that,
The sum of two supplementary anges = 180°
∴ x + (10x + 15°) = 180°
⇒ x + 10x + 15° = 180°
⇒ 11x = 180° - 15°
⇒ 11x = 165°
Dividing both sides by 11, we get

⇒ x = 15°
∴ The smaller angle = 15° and
The larger angle = 10(15° ) + 15° = 165°
Answer:
- 9x² + 10x + 4
Step-by-step explanation:
Calculate the subtraction as
- 4x² + 2x - 8 - (5x² - 8x - 12 ) ← distribute parenthesis by - 1
= - 4x² + 2x - 8 - 5x² + 8x + 12 ← collect like terms
= - 9x² + 10x + 4
8 - 5p = 2 - 3p
Move the terms
= -5p + 3p = 2-8
Collect like terms (calculate)
= -2p = -6
Divide both sides
p = 3 (Final Answer)
Answer:
m∠BOC = 40°
Step-by-step explanation:
Given O A ‾ ⊥ O C ‾ OA ⊥ OC m∠BOC=6x−6 ∘
m∠AOB=5x+8 ∘
Find m ∠ B O C:
This means that: m∠BOC and m∠AOC intersect at a right angle.
Hence:
m∠BOC + m∠AOC = 90°
Step 1
Solving for x
6x - 6 + 5x + 8 = 90°
11x -2 = 90°
11x = 90 - 2
11x = 88
x = 88/11
x = 8
Step 2
Solving for m∠BOC
m∠BOC = 6x - 8
m∠BOC = 6(8) - 8
= 48 - 8
= 40°
the question in English
Draw a rectangle having the base congruent to the nine sevenths of the height.
Let
b-------> the base of rectangle
h-------> the height of rectangle
we know that
b=(9/7)*h-------> this is the equation to obtain the base of the rectangle for a given height
examples
1) for h=7 units
b=(9/7)*7-------->b=9 units
the dimensions are 9 units x 7 units------> see the attached figure
2) for h=5 units
b=(9/7)*5-------->b=(45/7) units
the dimensions are (45/7) units x 5 units
The answer in Italian
Facciamo
b-------> base del rettangolo
h-------> altezza del rettangolo
Noi sappiamo che
b=(9/7)*h-------> questa è l'equazione per ottenere la base del rettangolo per una determinata altezza
esempi
1) per h=7 units
b=(9/7)*7-------->b=9 units
le dimensioni sono 9 units x 7 units----->
vedere la figura allegata
2) per h=5 units
b=(9/7)*5-------->b=(45/7) units
le dimensioni sono (45/7) units x 5 units