Answer:
d
Step-by-step explanation:
Answer:
There are many combinations based on the number you chose to subtract from both sides.
Step-by-step explanation:
Let the number be x.
According to the question,
3 x+7 > 4 x
We get, 3 x+1=4 x-6, after subtracting 6 from both sides.
3 x+1=4 x-6
4 x- 3 x=6+1
x=7
You will get the same answer if you subtract 3 x or 7 or any other number from both sides.
Thank you!
Step-by-step explanation:
x = amount of shares for $6.25
y = account of shares for $6.50
x + y = 500
x×6.25 + y×6.5 = 3218.75
x = 500 - y
(500 - y)×6.25 + y×6.5 = 3218.75
3125 - y×6.25 + y×6.5 = 3218.75
0.25×y = 93.75
y = 375
x = 500 - 375 = 125
so, he bought
375 shares of $6.50
125 shares of $6.25
<span>(a.)
Let's say α is the angle that subtends from the top of the screen to horizontal eye-level.
Let β be the angle that subtends from the bottom of the screen to horizontal eye-level.
tanα = (22 + 10 - 4) / x = 28/x
α = arctan(28/x)
tanβ = (10 - 4) / x = 6/x
β = arctan(6/x)
Ɵ = α - β
Ɵ = arctan(28/x) - arctan(6/x)
(b.)
tanƟ = tan(α - β) = (tanα - tanβ) / (1 + tanα tanβ)
tanƟ = (28/x - 6/x) / [1 + (28/x)(6/x)]
tanƟ = (22/x) / [1 + (168/x²)]
tanƟ = 22x / (x² + 168)
Ɵ = arctan[22x / (x² + 168)]</span>
Answer:
a) b = 8, c = 13
b) The equation of graph B is y = -x² + 3
Step-by-step explanation:
* Let us talk about the transformation
- If the function f(x) reflected across the x-axis, then the new function g(x) = - f(x)
- If the function f(x) reflected across the y-axis, then the new function g(x) = f(-x)
- If the function f(x) translated horizontally to the right by h units, then the new function g(x) = f(x - h)
- If the function f(x) translated horizontally to the left by h units, then the new function g(x) = f(x + h)
In the given question
∵ y = x² - 3
∵ The graph is translated 4 units to the left
→ That means substitute x by x + 4 as 4th rule above
∴ y = (x + 4)² - 3
→ Solve the bracket to put it in the form of y = ax² + bx + c
∵ (x + 4)² = (x + 4)(x + 4) = (x)(x) + (x)(4) + (4)(x) + (4)(4)
∴ (x + 4)² = x² + 4x + 4x + 16
→ Add the like terms
∴ (x + 4)² = x² + 8x + 16
→ Substitute it in the y above
∴ y = x² + 8x + 16 - 3
→ Add the like terms
∴ y = x² + 8x + 13
∴ b = 8 and c = 13
a) b = 8, c = 13
∵ The graph A is reflected in the x-axis
→ That means y will change to -y as 1st rule above
∴ -y = (x² - 3)
→ Multiply both sides by -1 to make y positive
∴ y = -(x² - 3)
→ Multiply the bracket by the negative sign
∴ y = -x² + 3
b) The equation of graph B is y = -x² + 3