Answer:
0.0035289
Step-by-step explanation:
From the question;
mean annual salary = $63,500
n = sample size = 31
Standard deviation = $6,200
Firstly, we calculate the z-score of $60,500
Mathematically;
z-score = x-mean/SD/√n = (60500-63500)/6200/√(31) = -2.6941
So we want to find the probability that P(z < -2.6941)
We can get this from the standard normal table
P( z < -2.6941) = 0.0035289
Step-by-step explanation:
Below is an attachment containing the solution.
When dealing with radicals and exponents, one must realize that fractional exponents deals directly with radicals. In that sense, sqrt(x) = x^1/2
Now, how to go about doing this:
In a fractional exponent, the numerator represents the actual exponent of the number. So, for x^2/3, the x is being squared.
For the denominator, that deals with the radical. The index, to be exact. The index describes what KIND of radical (or root) is being taken: square, cube, fourth, fifth, and so on. So, for our example x^2/3, x is squared, and that quantity is under a cube root (or a radical with a 3). Here are some more examples to help you understand a bit more:
x^6/5 = Fifth root of x^6
x^3/1 = x^3
^^^Exponential fractions still follow the same rules of simplifying, so...
x^2/4 = x^1/2 = sqrt(x)
Hope this helps!