<span>Declaring the volume function
double PyramidVolume(double baseLength, double baseWidth, double pyramidHeight){
double baseArea = baseLength * baseWidth;
double vol = ((baseArea * pyramidHeight) * 1/3);
return vol;
}
int main() {
cout << "Volume for 1.0, 1.0, 1.0 is: " << PyramidVolume(1.0, 1.0, 1.0) << endl;
return 0;
}
Defining the function,
include <iostream>
double PyramidVolume(double, double, double);
int main()
{
std::cout << "Volume for 1.0, 1.0, 1.0 is: " << PyramidVolume(1.0, 1.0, 1.0) << std::endl;
return 0;
}
double PyramidVolume(double length, double width, double height)
{
return length * width * height / 3;
}</span>
Find the Mean, Median, Mode, and Range: 1. 52, 46, 63, 40, 56 2. 40, 24, 7, 37, 43, 16, 24, 25
kotykmax [81]
Mode= 24.
median = 40.
range= 62.
mean = 27.
The answer:
_____________________________________________
x = (⅔)y ;
y = 3x/2.
_____________________________________________
Given:
x + (⅓)y + x - (2/4)<span>y - x = (3/6)y ;
______________________________________
</span>
Take the: x + x - x = 1x + 1x - 1x = 2x - 1x = 1x = x ;
and rewrite:
x + (⅓)y - (2/4)y = (3/6)y ;
_______________________________
Note that: (2/4)y = (<span>½)y ;
and: (3/6)y = (</span><span>½)y ; so;
___________________________
Rewrite as:
____________________________
</span>x + (⅓)y - (½)y = (½)y ;
Add "(½)y" to EACH SIDE of the equation;
_________________________________
x + (⅓)y - (½)y + (½)y = (½)y + (½)y ;
to get: x + (⅓)y = y ;
x = 1y - (⅓)y = (3/3) y - (1/3)y - [ (3-1)/3] y = (⅔)y ;
So: x = (<span>⅔)y ;
In terms of "y" ;
Given: </span>(⅔)y = x ; Multiply each side of the equation by "3" ;
3*[(⅔)y] = 3*x ;
to get: 2y = 3x ;
Now, divide EACH SIDE of the equation by "2" ; to isolate "y" on one side of the equation; and to solve for "y" (in terms of "x"):
2y / 2 = 3x / 2 ;
to get:
y = 3x/2 ;
___________________________________
Answer:
its 5/2 happy to help ya
Step-by-step explanation:
Answer:
X = 4
Y = 30
i think.
Step-by-step explanation: