-2 * 3 = -6.
-6/2 = -3.
-3 * 2 = -6
-6 + 2 = -4
-4 - 2= -6
-6 * 2 = -12.
I think I did that right lol
        
                    
             
        
        
        
18 6/7<em /> is the awnser 
        
                    
             
        
        
        
<span>The y-intercept of  is  .
Of course, it is 3 less than  , the y-intercept of  .
Subtracting 3 does not change either the regions where the graph is increasing and decreasing, or the end behavior. It just translates the graph 3 units down.
It does not matter is the function is odd or even.
 is the mirror image of  stretched along the y-direction.
The y-intercept, the value of  for  , is</span><span>which is  times the y-intercept of  .</span><span>Because of the negative factor/mirror-like graph, the intervals where  increases are the intervals where  decreases, and vice versa.
The end behavior is similarly reversed.
If  then  .
If  then  .
If  then  .
The same goes for the other end, as  tends to  .
All of the above applies equally to any function, polynomial or not, odd, even, or neither odd not even.
Of course, if polynomial functions are understood to have a non-zero degree,  never happens for a polynomial function.</span><span> </span>
        
                    
             
        
        
        
Refer to the diagram shown below.
Because ACFD is a parallelogram, its opposite angles are equal. Therefore
x = m∠ACF = m∠BCF = 48°  
Similarly,
y = m∠CAD = m∠CFD 
The sum of the angles inside a parallelogram is 360°. Therefore
48° + x + y + y = 360°
Because x = 48°,
48° + 48° + 2y = 360°
2y = 360° - 96° = 264°
y = 132°
Because ABED and FEBC are congruent, therefore
y = m∠DAB = m∠CFE = 132°
x = m∠ADE = m∠FCB = 48°
Because FEBC is a parallelogram, the opposite angles are equal. Therefore
m∠CBE = m∠CFE = y = 132°
m∠BCF = m∠BEF = x = 48°
Answer:
The measures of all angles of trapezoid FEBC are
m∠BCF = 48°
m∠BEF = 48°
m∠CBE = 132°
m∠CFE = 132°