The last one is the right answer b/c 7 plus 0.30 for each topping, -> t
Answer:
The twentieth term is 50.
Step-by-step explanation:
The equation that describes the arithmetic sequence describes it's "general term", which means that all the numbers in that sequence must follow that equation. For instance, if we want to find the first term of the sequence we must make a = 1 and we have:
a1 = 3*1 - 10
a1 = -7
Therefore to find the twentieth term we need to make n equal to 20. This is done below:
a20 = 3*20 - 10
a20 = 60 - 10
a20 = 50
The twentieth term is 50.
Given:
M=(x1, y1)=(-2,-1),
N=(x2, y2)=(3,1),
M'=(x3, y3)= (0,2),
N'=(x4, y4)=(5, 4).
We can prove MN and M'N' have the same length by proving that the points form the vertices of a parallelogram.
For a parallelogram, opposite sides are equal
If we prove that the quadrilateral MNN'M' forms a parallellogram, then MN and M'N' will be the oppposite sides. So, we can prove that MN=M'N'.
To prove MNN'M' is a parallelogram, we have to first prove that two pairs of opposite sides are parallel,
Slope of MN= Slope of M'N'.
Slope of MM'=NN'.

Hence, slope of MN=Slope of M'N' and therefore, MN parallel to M'N'

Hence, slope of MM'=Slope of NN' nd therefore, MM' parallel to NN'.
Since both pairs of opposite sides of MNN'M' are parallel, MM'N'N is a parallelogram.
Since the opposite sides are of equal length in a parallelogram, it is proved that segments MN and M'N' have the same length.
Answer:
point form: (-2,7)
equation form: X = -2, Y = 7