Answer:
The claim that the scores of UT students are less than the US average is wrong
Step-by-step explanation:
Given : Sample size = 64
Standard deviation = 112
Mean = 505
Average score = 477
To Find : Test the claim that the scores of UT students are less than the US average at the 0.05 level of significance.
Solution:
Sample size = 64
n > 30
So we will use z test

Formula : 


Refer the z table for p value
p value = 0.9772
α=0.05
p value > α
So, we accept the null hypothesis
Hence The claim that the scores of UT students are less than the US average is wrong
Answer: The answer is (D) Reflection across the line y = -x.
Step-by-step explanation: In figure given in the question, we can see two triangles, ΔABC and ΔA'B'C' where the second triangle is the result of transformation from the first one.
(A) If we rotate ΔABC 180° counterclockwise about the origin, then the image will coincide with ΔA'B'C'. So, this transformation can take place here.
(B) If we reflect ΔABC across the origin, then also the image will coincide with ΔA'B'C' and so this transformation can also take place.
(C) If we rotate ΔABC through 180° clockwise about the origin, the we will see the image will be same as ΔA'B'C'. Hence, this transformation can also take place.
(D) Finally, if we reflect ΔABC across the line y = -x, the the image formed will be different from ΔA'B'C', in fact, it is ΔA'D'E', as shown in the attached figure. So, this transformation can not take place here.
Thus, the correct option is (D).
The numerical coefficient of this term is -3.
It would be: 12/75 = 4/25
So, your answer is 4/25
Answer:
Point slope formula: (y + 4) = 2(x - 5)
Slope intercept formula: y = 2x - 14
Step-by-step explanation:
Point slope formula: (y + 4) = 2(x - 5)
Slope intercept formula: y = 2x + b, -4 = 10 + b, b = -14
y = 2x - 14