Answer:
<h2><em><u>Pythagorean </u></em><em><u>theorem </u></em><em><u>reads </u></em><em><u>as:</u></em></h2>
<h2><em><u>H²</u></em><em><u>=</u></em><em><u>P²</u></em><em><u>+</u></em><em><u>B</u></em><em><u>²</u></em></h2>
<h2><em><u>in </u></em><em><u>which </u></em><em><u>p </u></em><em><u>reads </u></em><em><u>as </u></em><em><u>perpendicular </u></em><em><u>so </u></em></h2>
<h2><em><u>P²</u></em><em><u>=</u></em><em><u>H²</u></em><em><u>-</u></em><em><u>B²</u></em></h2>
<em><u>
</u></em>
Associativity means
(A+B)+C=A+(B+C)=A+B+C
Substitute A=9, B=8, C=32 to apply to this problem.
Look at the tenth's place. (:
Answer:
C. Point A lies on ray BC
Step-by-step explanation:
Points A and C can be connected by a segment which would be a measure of the distance between the points. Locating point B between AC, makes the three points lying on segment AC.
A ray extends from a point to infinity, a line extend to infinity on both sides, while a segment is known to have two endpoints. Therefore, points AC are the end points of the segment AC, and point B between this segment confirms that point B lies on the segment AC. Therefore, Point A lies on ray BC is not correct.