Answer:
Initial temperature, T1 = 99.4 Kelvin
Explanation:
<u>Given the following data;</u>
- Initial volume, V1 = 65.8 Litres
- Final temperature, T2 = 200 Kelvin
- Final volume, V2 = 132.4 Litres
To find the initial temperature (T1), we would use Charles' law;
Charles states that when the pressure of an ideal gas is kept constant, the volume of the gas is directly proportional to the absolute temperature of the gas.
Mathematically, Charles' law is given by the formula;


Making T1 as the subject formula, we have;

Substituting the values into the formula, we have;


<em>Initial temperature, T1 = 99.4 Kelvin</em>
Answer:
B. The carbons on either side of the double bond are Pointed in opposite directions
Answer:
270g
Explanation:
Given parameters:
Concentration of NaOH = 1.5M
Volume = 4.5L
Unknown
Mass of NaOH added = ?
Solution:
To solve the problem, we need to find the number of moles of the NaOH first;
Number of moles = concentration x volume
Number of moles = 1.5 x 4.5 = 6.75mol
Now;
Mass = Number of moles x molar mass
Molar mass of NaOH = 23 + 16 + 1 = 40g/mol
Mass = 6.75 x 40 = 270g
Answer: Gas
Explanation: Because to check temperature of a room you use a gas in then room
The B stands for Boron which is 5 on the periodic table.
The O stands for Oxygen which is 8 on the periodic table.
There is 1 Boron, It's only 1 because there is only on B which doesn't have coefficent
There is 2 Oxygen, The 2 is from the 2 next to the O