Answer:
(w^2 - 4w + 16)
Step-by-step explanation:
Note that w^3 +64 is the sum of two perfect cubes, which are (w)^3 and (4)^3. The corresponding factors are (w + 4)(w^2 - 4w + 16).
Therefore,
(w^3 +64)/(4+ w) reduces as follows:
(w^3 +64)/(4+ w) (4 + w)(w^2 - 4w + 16)
--------------------------- = --------------------------------- = (w^2 - 4w + 16)
4 + w 4 + w
20 hope this helped <333333333333333333333
----------------------------
Answer:
The area after 9 years will be 1,234 km^2
Step-by-step explanation:
In this question, we are tasked with calculating what the area of a certain forest that decreases at a certain percentage would be after some years.
To answer this question, we shall be using an exponential approximation.
Now, to use this exponential approximation, we shall be needing a supporting exponential mathematical equation.
This can be written as;
A = I(1-r)^t
where A is the new area we are looking for
I is the initial area which is 1700 according to the question
r is the rate of decrease which is 3.5% = 3.5/100 = 0.035
t is time which is 9 years according to the question
We plug these values and have the following;
A = 1700(1-0.035)^9
A = 1700(0.965)^9
A = 1,233.66
This is 1,234 km^2 to the nearest square kilometer
Four more I hoped this helped :)