Answer:
0.5 %
Step-by-step explanation:
Annual rate = 6 %/yr
Monthly rate = ¹/₁₂ × 6 = 0.5 %/mo
If you invested $100 at 6 % annual simple interest, you would have <em>$106 </em>at the end of the year.
Simple interest is calculated only on the principal.
If the interest were calculated at 0.5 % monthly simple interest, you would get $0.50 at the end of each month. At the end of 12 mo, you would have <em>$106.
</em>
The equation of the hyperbola is : 
The center of a hyperbola is located at the origin that means at (0, 0) and one of the focus is at (-50, 0)
As both center and the focus are lying on the x-axis, so the hyperbola is a horizontal hyperbola and the standard equation of horizontal hyperbola when center is at origin:
The distance from center to focus is 'c' and here focus is at (-50,0)
So, c= 50
Now if the distance from center to the directrix line is 'd', then

Here the directrix line is given as : x= 2304/50
Thus, 
⇒ 
⇒ a² = 2304
⇒ a = √2304 = 48
For hyperbola, b² = c² - a²
⇒ b² = 50² - 48² (By plugging c=50 and a = 48)
⇒ b² = 2500 - 2304
⇒ b² = 196
⇒ b = √196 = 14
So, the equation of the hyperbola is : 
What is this, never seen anything like it before:(
I think the answer is 2/5
The total weight of candies is unknown. Let x = the total weight of candies.
"One student ate 3/20 of all candies and another 1.2 lb":
The first student ate (3/20)x plus 1.2 lb which is 0.15x + 1.2.
"The second student ate 3/5 of the candies and the remaining 0.3 lb."
The second student ate (3/5)x and 0.3 lb which is 0.6x + 0.3.
Altogether the 2 students ate 0.15x + 1.2 + 0.6x + 0.3.
That was all the amount of candies, so that sum equals x.
0.15x + 1.2 + 0.6x + 0.3 = x
Now we solve the equation for x to find what the total amount of candies was.
0.75x + 1.5 = x
-0.25x = -1.5
x = 6
The total amount of candies was 6 lb.
The first student ate 0.15x + 1.2 = 0.15(6) + 1.2 = 0.9 + 1.2 = 2.1, or 2.1 lb of candies.
The second student ate 0.6x + 0.3 = 0.6(6) + 0.3 = 3.6 + 0.3 = 3.9, or 3.9 lb of candies.
Answer: The first student ate 2.1 lb of candies, and the second student ate 3.9 lb of candies.