You need to use a ratio of height (H) to shadow length (L) to solve the first problem. It's basically a use of similar triangles, with two perpendicular sides, and with the shadow making the same angle with the vertical.
6 ft = 72 ins, so that rH/L = 72/16 = 9/2 for the player.
So the bleachers are 9/2 x 6 ft = 27 ft.
For the second problem, 9 ft = 108 in, so that the ratio of the actual linear dimensions to the plan's linear dimensions are 9ft/(1/2in) = 2 x 108 = 216.
So the stage will have dimensions 216 times larger than 1.75" by 3".
That would be 31ft 6ins x 54ft.
Live long and prosper.
Answer: 4.20 gigabyte
Step-by-step explanation:
Based on the information given in the question, the equation that can be used to determine the the number of gigabytes of data Peyton can use while staying within her budget will be:
48 + 3g = 60.60
3g = 60.60 - 48
3g = 12.60
g = 12.60/3
= 4.20
The number of gigabytes of data is 4.20g
Answer:

Step-by-step explanation:
We are given that a function

We have to find the average value of function on the given interval [1,e]
Average value of function on interval [a,b] is given by

Using the formula

By Parts integration formula

u=ln x and v=dx
Apply by parts integration
![f_{avg}=\frac{1}{e-1}([xlnx]^{e}_{1}-\int_{1}^{e}(\frac{1}{x}\times xdx))](https://tex.z-dn.net/?f=f_%7Bavg%7D%3D%5Cfrac%7B1%7D%7Be-1%7D%28%5Bxlnx%5D%5E%7Be%7D_%7B1%7D-%5Cint_%7B1%7D%5E%7Be%7D%28%5Cfrac%7B1%7D%7Bx%7D%5Ctimes%20xdx%29%29)
![f_{avg}=\frac{1}{e-1}(elne-ln1-[x]^{e}_{1})](https://tex.z-dn.net/?f=f_%7Bavg%7D%3D%5Cfrac%7B1%7D%7Be-1%7D%28elne-ln1-%5Bx%5D%5E%7Be%7D_%7B1%7D%29)

By using property lne=1,ln 1=0

Ok, if you say so. Jean took 1/2 hour to complete 3/8 of a math problem.
<span>It will take 20 minutes. The fridge needs to cool down by 90-50=40degrees. The fridge cools at 2 degrees per minute, i.e. 40/2=20 minutes total.</span>