I think this is what you’re looking for hopefully
Answer:
If a female child has hemophilia it is possible that the mother is a carrier of the hemophilia gene and the father has hemophilia.
Explanation:
- A daughter gets X chromosome from both her parents.
- It is generally seen in males.
- Hemophilia is generally recessive in females.They act as carriers of hemophilia. This occurs because they have a X chromosome that dominates the hemophilia affected gene that they inherit from any parent.
- But, if both the parents have faulty genes ,i.e the mother is the carrier of the gene and the father is hemophiliac, then the chances are the daughter has hemophilia too.
no, the scope on it blocks out natural light
Answer:
1. G° = -RT ln (G1P/P)
3.1 = 8.314 × 310 × ln (G1P/P)
3.1 / 2577.34 = ln (G1P/P)
0.0012 = ln (G1P/P)
0.0012 = (log G1P/P)/log 2.71828
0.4342 × 0.0012 = log G1P/P
0.00052 = log G1P/P
G1P/P = 10^0.00052 = 1.0012
P/G1P = 1/1.0012 = 0.9988
2. The cleavage of glycogen phosphorolytically is beneficial for the cell to conduct the process as the discharged glucose is phosphorylated. A general hydrolytic cleavage would give rise to only a glucose, which has to be phosphorylated again with the help of ATP.
Another merit of phosphorylated glucose is that it comprises the negative charge and cannot diffuse out of the muscle cell. Thus, the reaction will not be at equilibrium under the physiological conditions and always encourages the generation of the products. The formation of products will amend the change in free energy in such a manner that the reaction will always carry in the forward direction.
3. Greater the ratio of [Pi]/[glucose-1-phosphate], higher will be the relative rate of glycogen phosphorylase in comparison to the phosphoglucomutase as the transformation of Glu-1-P becomes slow because of lesser accessibility of substrate.
Answer:
The functional groups that define the two different ends of a single strand of nucleic acids are:
B. a free hydroxyl group on the 5' carbon a free hydroxyl group on the 3' carbon
G. a free phosphate group on the 5' carbon
Explanation:
A nucleic acid is a polymer formed of nucleotides that are linked with a phosphodiester bond. The structure of a nucleotide consists on a phosphate group linked to a pentose (ribose in RNA and deoxyribose in DNA) that is also attached to a nitrogenous base. The nitrogenous bases are adenine, guanine, cytosine, thymine (in DNA) and uracil (in RNA).
DNA and RNA are nucleic acids which can be found in a double or single strand presentation.
Nucleic acids are synthesize in the 5’ to 3’ direction, so that is why the convention is that the sequences are written and read in that direction.
The strand of a nucleic acid is directional with an end-to-end orientation, where the 5’ end has a free hydroxyl or phosphate group on the 5' carbon of the terminal pentose, and the 3’ end has a free hydroxyl group on the 3’ carbon on the terminal pentose (ribose/ deoxyribose).