1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AnnZ [28]
3 years ago
14

Which is the only center point that lies on the edge of a triangle?

Mathematics
2 answers:
Vlad1618 [11]3 years ago
6 0

Answer:

Circumcenter

Circumcenter is the only center point on the edge of a triangle. this is true in the case of the right-angle triangle. It exactly lies on the midpoint of the hypotenuse. Circumcenter is the point of intersection of the perpendicular bisector of sides of triangles.

topjm [15]3 years ago
3 0

Circumcenter of a right triangle is the only center point that lies on the edge of a triangle. Step-by-step explanation: Circumcircle is the circle that passes through all three vertices of the triangle.

You might be interested in
What is the equation of the line that has a slope of 1 and passes through the point (8,6)?
Airida [17]

Answer:

The equation of this line in point-slope form would be y - 6 = (x - 8)

Step-by-step explanation:

In order to find this, we simply plug into the point-slope form using the known information.

y - y1 = m(x - x1)

y - 6 = 1(x - 8)

y - 6 = x - 8

7 0
3 years ago
What is 1 over 3 x plus 1 over 4 equals 5 over 12
guajiro [1.7K]
Simplify 1/3y to y/3

subtract 1/4 from both sides

simplify 5/12 - 1/4 to 1/6

multiply both sides by 3

simplify 1/6 x 3 to 3/6

simplify 3/6 to 1/2

Answer: y = 1/2
5 0
3 years ago
Question 1
drek231 [11]

QUESTION 1

We want to expand (x-2)^6.


We apply the binomial theorem which is given by the  formula

(a+b)^n=^nC_0a^nb^0+^nC_1a^{n-1}b^1+^nC_2a^{n-2}b^2+...+^nC_na^{n-n}b^n.

By comparison,

a=x,b=-2,n=6.


We substitute all these values to obtain,


(x-2)^6=^6C_0x^6(-2)^0+^6C_1x^{6-1}(-2)^1+^6C_2x^{6-2}(-2)^2+^6C_3x^{6-3}(-2)^3+^6C_4x^{6-4}(-2)^4+^6C_5x^{6-5}(-2)^5+^6C_6x^{6-6}(-2)^6.


We now simplify to obtain,

(x-2)^6=^nC_0x^6(-2)^0+^6C_1x^{5}(-2)^1+^6C_2x^{4}(-2)^2+^6C_3x^{3}(-2)^3+^6C_4x^{2}(-2)^4+^6C_5x^{1}(-2)^5+^6C_6x^{0}(-2)^6.

This gives,

(x-2)^6=x^6-12x^{5}+60x^{4}-160x^{3}(-2)^3+240x^{2}-1925x+64.


Ans:C

QUESTION 2


We want to expand

(x+2y)^4.


We apply the binomial theorem to obtain,


(x+2y)^4=^4C_0x^4(2y)^0+^4C_1x^{4-1}(2y)^1+^4C_2x^{4-2}(2y)^2+^4C_3x^{4-3}(2y)^3+^4C_4x^{4-4}(2y)^4.


We simplify to get,


(x+2y)^4=x^4(2y)^0+4x^{3}(2y)^1+6x^{2}(2y)^2+4x^{1}(2y)^3+x^{0}(2y)^4.


We simplify further to obtain,


(x+2y)^4=x^4+8x^{3}y+24x^{2}y^2+32x^{1}y^3+16y^4


Ans:B


QUESTION 3

We want to find the number of terms in the binomial expansion,

(a+b)^{20}.


In the above expression, n=20.


The number of terms in a binomial expression is (n+1)=20+1=21.


Therefore there are 21 terms in the binomial expansion.


Ans:C


QUESTION 4


We want to expand

(x-y)^4.


We apply the binomial theorem to obtain,


(x-y)^4=^4C_0x^4(-y)^0+^4C_1x^{4-1}(-y)^1+^4C_2x^{4-2}(2y)^2+^4C_3x^{4-3}(-y)^3+^4C_4x^{4-4}(-y)^4.


We simplify to get,


(x+2y)^4=^x^4(-y)^0+4x^{3}(-y)^1+6x^{2}(-y)^2+4x^{1}(-y)^3+x^{0}(-y)^4.


We simplify further to obtain,


(x+2y)^4=x^4-4x^{3}y+6x^{2}y^2-4x^{1}y^3+y^4


Ans: C


QUESTION 5

We want to expand (5a+b)^5


We apply the binomial theorem to obtain,

(5a+b)^5=^5C_0(5a)^5(b)^0+^5C_1(5a)^{5-1}(b)^1+^5C_2(5a)^{5-2}(b)^2+^5C_3(5a)^{5-3}(b)^3+^5C_4(5a)^{5-4}(b)^4+^5C_5(5a)^{5-5}(b)^5.


We simplify to obtain,

(5a+b)^5=^5C_0(5a)^5(b)^0+^5C_1(5a)^{4}(b)^1+^5C_2(5a)^{3}(b)^2+^5C_3(5a)^{2}(b)^3+^5C_4(5a)^{1}(b)^4+^5C_5(5a)^{0}(b)^5.


This finally gives us,


(5a+b)^5=3125a^5+3125a^{4}b+1250a^{3}b^2+^250a^{2}(b)^3+25a(b)^4+b^5.


Ans:B

QUESTION 6

We want to expand (x+2y)^5.

We apply the binomial theorem to obtain,

(x+2y)^5=^5C_0(x)^5(2y)^0+^5C_1(x)^{5-1}(2y)^1+^5C_2(x)^{5-2}(2y)^2+^5C_3(x)^{5-3}(2y)^3+^5C_4(x)^{5-4}(2y)^4+^5C_5(x)^{5-5}(2y)^5.


We simplify to get,


(x+2y)^5=^5C_0(x)^5(2y)^0+^5C_1(x)^{4}(2y)^1+^5C_2(x)^{3}(2y)^2+^5C_3(x)^{2}(2y)^3+^5C_4(x)^{1}(2y)^4+^5C_5(x)^{0}(2y)^5.


This will give us,

(x+2y)^5=x^5+^10(x)^{4}y+40(x)^{3}y^2+80(x)^{2}y^3+80(x)y^4+32y^5.


Ans:A


QUESTION 7

We want to find the 6th term  of (a-y)^7.


The nth term is given by the formula,

T_{r+1}=^nC_ra^{n-r}b^r.

Where r=5,n=7,b=-y


We substitute to obtain,


T_{5+1}=^7C_5a^{7-5}(-y)^5.


T_{6}=-21a^{2}y^5.


Ans:D


QUESTION 8.

We want to find the 6th term of (2x-3y)^{11}


The nth term is given by the formula,

T_{r+1}=^nC_ra^{n-r}b^r.

Where r=5,n=11,a=2x,b=-3y


We substitute to obtain,


T_{5+1}=^{11}C_5(2x)^{11-5}(-3y)^5.


T_{6}=-7,185,024x^{6}y^5.


Ans:D

QUESTION 9

We want to find the 6th term  of (x+y)^8.


The nth term is given by the formula,

T_{r+1}=^nC_ra^{n-r}b^r.

Where r=5,n=8,a=x,b=y


We substitute to obtain,


T_{5+1}=^8C_5(x)^{8-5}(y)^5.


T_{6}=56a^{3}y^5.


Ans: A


We want to find the 7th term  of (x+4)^8.


The nth term is given by the formula,

T_{r+1}=^nC_ra^{n-r}b^r.

Where r=6,n=8,a=x,b=4


We substitute to obtain,


T_{6+1}=^8C_5(x)^{8-6}(4)^6.


T_{7}=114688x^{2}.


Ans:A





4 0
3 years ago
Use cylindrical coordinates. find the volume of the solid that is enclosed by the cone z = x2 + y2 and the sphere x2 + y2 + z2 =
sashaice [31]
Let R be the solid. Then the volume is

\displaystyle\iiint_R\mathrm dV=\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=\sqrt8}\int_{\zeta=r^2}^{\zeta=\sqrt{72-r^2}}r\,\mathrm d\zeta\,\mathrm dr\,\mathrm d\theta

which follows from the facts that

\begin{cases}x=r\cos\theta\\y=r\sin\theta\\z=\zeta\end{cases}\implies\mathrm dx\,\mathrm dy\,\mathrm dz=r\,\mathrm dr\,\mathrm d\theta\,\mathrm d\zeta
(by computing the Jacobian)

and

z=x^2+y^2=r^2\implies z+z^2=72\implies z=-9\text{ or }z=8
(we take the positive solution, since it's clear that R lies above the x-y plane)
r^2+z^2=72\implies z=\pm\sqrt{72-r^2}
(again, taking the positive root for the same reason)
z=r^2\implies 8=r^2\implies r=\sqrt8

\displaystyle\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=\sqrt8}\int_{\zeta=r^2}^{\zeta=\sqrt{72-r^2}}r\,\mathrm d\zeta\,\mathrm dr\,\mathrm d\theta
=\displaystyle2\pi\int_{r=0}^{r=\sqrt8}\int_{\zeta=r^2}^{\zeta=\sqrt{72-r^2}}r\,\mathrm d\zeta\,\mathrm dr
=\displaystyle2\pi\int_{r=0}^{r=\sqrt8}r(\sqrt{72-r^2}-r^2)\,\mathrm dr
=\displaystyle2\pi\int_{r=0}^{r=\sqrt8}(r\sqrt{72-r^2}-r^3)\,\mathrm dr
=\dfrac{32(27\sqrt2-35)\pi}3
7 0
3 years ago
How many positive integers between 1000 and 9999 inclusive
bekas [8.4K]

Answer:

Step-by-step explanation:

a.

first number is  1000-1+9=1008

9)1000(1

    9

-------

     10

       9

    -----

       10

         9

       ----

         1

       ----

last number is 9999

9| 9999

  ---------

    1111 |0

    --------

9999=1008+(n-1)9

9999-1008=(n-1)9

n-1=8991/9=999

n=999+1=1000

b.

first digit=1000

last digit=9999-1=9998

2 |9999

  ---------

  |4999|1

9998=1000+(n-1)2

(n-1)2=9998-1000=8998

n-1=4499

n=4499=1=5000

c.not sure

d.

total  numbers=9000

9999=1000+(n-1)1

9999-1000=n-1

n=8999+1=9000

numbers divisible by 3=3000

first number=1002

last number=9999

9999=1002+(n-1)3

(n-1)3=9999-1002=8997

n-1=2999

n=2999+1=3000

numbers not divisible by 3=9000-3000=6000

e.

numbers divisible by 5=1800

first number=1000

last number=9995

9995=1000+(n-1)5

(n-1)5=9995-1000=8995

n-1=1799

n=1799+1=1800

numbers divisible by 7=1286

7 | 1000

  ---------

  |  142-6

1000-6+7=1001

7 | 9999

  |---------

    1428-3

9999-3=9996

first digit=1001

last digit=9996

9996=1001+(n-1)7

(n-1)7=9996-1001=8995

n-1=1285

n=1285+1=1286

numbers divisible by 35=257

first digit=1015

35 ) 1000 ( 28

        70

       ----

        300

        280

        ------

           20

           ---

1000-20+35=1015

35)9999(285

     70

    ----

     299

     280

     -----

        199

        175

        ----

          24

         ----

last digit=9999-24=9975

9975=1015+(n-1)35

(n-1)35=9975-1015=8960

n-1=8960/35=256

n=257

reqd. numbers=1800+1286-257=3019

7 0
3 years ago
Other questions:
  • Out of every 240 containers of juice brought in a grocery store, 116 are orange juice. what fraction purchased is orange juice
    13·2 answers
  • Evaluate the expression when b is 6 and t is -3  5bt
    8·2 answers
  • To find the height of a mountain, surveyors often find the angle of elevation to the top from two points at the same altitude a
    11·1 answer
  • Given the following two points calculate the rate of change: (3,10) (7,10)
    8·1 answer
  • A cylinder is 20 inches long and has a diameter of 10 inches. The approximate volume of the cylinder is blank cubic centimeters.
    14·1 answer
  • Noah ran 54 miles in 9 days.The graph relating Greta’s total distance to the number of days passes through the points (0,0) and
    6·1 answer
  • Which graph represents the solution set of -4x-y<_-6
    14·1 answer
  • Which of these best represents the rate of change in the volume of the gas sample with respect to the temperature
    5·1 answer
  • John wants to buy strawberries and apples to make a fruit tart. Strawberries cost $3 per pound and apples cost $2.25 per pound.
    14·1 answer
  • Find mA in abc if mB = 38° and cmC = 38°
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!