Answer: figures C and D.
Explanation:
The question is which two figures have the same volume. Hence, you have to calculate the volumes of each figure until you find the two with the same volume.
1) Figure A. It is a slant cone.
Dimensions:
- slant height, l = 6 cm
- height, h: 5 cm
- base area, b: 20 cm²
The volume of a slant cone is the same as the volume of a regular cone if the height and radius of both cones are the same.
Formula: V = (1/3)(base area)(height) = (1/3)b·h
Calculations:
- V = (1/3)×20cm²×5cm = 100/3 cm³
2. Figure B. It is a right cylinder
Dimensions:
- base area, b: 20 cm²
- height, h: 6 cm
Formula: V = (base area)(height) = b·h
Calculations:
- V = 20 cm²· 6cm = 120 cm³
3. Figure C. It is a slant cylinder.
Dimensions:
- base area, b: 20 cm²
- slant height, l: 6 cm
- height, h: 5 cm
The volume of a slant cylinder is the same as the volume of a regular cylinder if the height and radius of both cylinders are the same.
Formula: V = (base area)(height) = b·h
Calculations:
- V = 20cm² · 5cm = 100 cm³
4. Fiigure D. It is a rectangular pyramid.
Dimensions:
- length, l: 6cm
- base area, b: 20 cm²
- height, h: 5 cm
Formula: V = (base area) (height) = b·h
Calculations:
- V = 20 cm² · 5 cm = 100 cm³
→ Now, you have found the two figures with the same volume: figure C and figure D. ←
Either twice or more than twice. But I’d go with twice
Answer:
34%
Step-by-step explanation:
LammettHash is right just take it as a whole number (for those of you using acellus)
The answer is 3p^3
Hope this helps
Parallel lines have the same slope so for the new line we m=-2 and the point (2,2) we will substitute this info into our line to solce for b the y intercept.
Y=-2x+b
(2)=-2(2)+b
2=-4+b
2+4=-4+4+b
6=b
Now we put it all together using the slope m=-2 and the y intercept of 6
Y=-2x+6