1. Cuando encendí la radio, las noticias .......... (terminar)
2. El centro comercial ....... (no / abierto) aún cuando llegué
3. ……………. (le dices) la verdad a tus padres?
4. El señor Palmer .......... (no / hablar) ningún chino antes de mudarse a pekín
Step-by-step explanation:
sorry I wanted to help you but my calculator is take out decimals sorry I don't know what to do
Answer:
"30 years or less when, in reality, the average age is more than 30 years"
Step-by-step explanation:
Type I error is produced when conclusion rejects a true null hypothesis.
The null hypothesis is
"The average gamer is more than 30 years old"
(deduced from the wording, not explicitly stated).
Then if the conclusion is "the average gamer is less than or equal to 30 years old" when in reality the average age is more than 30 years, then there is a type I error, since the null hypothesis is rejected.
Answer is D:
"30 years or less when, in reality, the average age is more than 30 years"
<span>You can probably just work it out.
You need non-negative integer solutions to p+5n+10d+25q = 82.
If p = leftovers, then you simply need 5n + 10d + 25q ≤ 80.
So this is the same as n + 2d + 5q ≤ 16
So now you simply have to "crank out" the cases.
Case q=0 [ n + 2d ≤ 16 ]
Case (q=0,d=0) → n = 0 through 16 [17 possibilities]
Case (q=0,d=1) → n = 0 through 14 [15 possibilities]
...
Case (q=0,d=7) → n = 0 through 2 [3 possibilities]
Case (q=0,d=8) → n = 0 [1 possibility]
Total from q=0 case: 1 + 3 + ... + 15 + 17 = 81
Case q=1 [ n + 2d ≤ 11 ]
Case (q=1,d=0) → n = 0 through 11 [12]
Case (q=1,d=1) → n = 0 through 9 [10]
...
Case (q=1,d=5) → n = 0 through 1 [2]
Total from q=1 case: 2 + 4 + ... + 10 + 12 = 42
Case q=2 [ n + 2 ≤ 6 ]
Case (q=2,d=0) → n = 0 through 6 [7]
Case (q=2,d=1) → n = 0 through 4 [5]
Case (q=2,d=2) → n = 0 through 2 [3]
Case (q=2,d=3) → n = 0 [1]
Total from case q=2: 1 + 3 + 5 + 7 = 16
Case q=3 [ n + 2d ≤ 1 ]
Here d must be 0, so there is only the case:
Case (q=3,d=0) → n = 0 through 1 [2]
So the case q=3 only has 2.
Grand total: 2 + 16 + 42 + 81 = 141 </span>