1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mario62 [17]
3 years ago
8

Given tan theta =9, use trigonometric identities to find the exact value of each of the following:_______

Mathematics
1 answer:
Ludmilka [50]3 years ago
4 0

Answer:

(a)\ \sec^2(\theta) = 82

(b)\ \cot(\theta) = \frac{1}{9}

(c)\ \cot(\frac{\pi}{2} - \theta) = 9

(d)\ \csc^2(\theta) = \frac{82}{81}

Step-by-step explanation:

Given

\tan(\theta) = 9

Required

Solve (a) to (d)

Using tan formula, we have:

\tan(\theta) = \frac{Opposite}{Adjacent}

This gives:

\frac{Opposite}{Adjacent} = 9

Rewrite as:

\frac{Opposite}{Adjacent} = \frac{9}{1}

Using a unit ratio;

Opposite = 9; Adjacent = 1

Using Pythagoras theorem, we have:

Hypotenuse^2 = Opposite^2 + Adjacent^2

Hypotenuse^2 = 9^2 + 1^2

Hypotenuse^2 = 81 + 1

Hypotenuse^2 = 82

Take square roots of both sides

Hypotenuse =\sqrt{82}

So, we have:

Opposite = 9; Adjacent = 1

Hypotenuse =\sqrt{82}

Solving (a):

\sec^2(\theta)

This is calculated as:

\sec^2(\theta) = (\sec(\theta))^2

\sec^2(\theta) = (\frac{1}{\cos(\theta)})^2

Where:

\cos(\theta) = \frac{Adjacent}{Hypotenuse}

\cos(\theta) = \frac{1}{\sqrt{82}}

So:

\sec^2(\theta) = (\frac{1}{\cos(\theta)})^2

\sec^2(\theta) = (\frac{1}{\frac{1}{\sqrt{82}}})^2

\sec^2(\theta) = (\sqrt{82})^2

\sec^2(\theta) = 82

Solving (b):

\cot(\theta)

This is calculated as:

\cot(\theta) = \frac{1}{\tan(\theta)}

Where:

\tan(\theta) = 9 ---- given

So:

\cot(\theta) = \frac{1}{\tan(\theta)}

\cot(\theta) = \frac{1}{9}

Solving (c):

\cot(\frac{\pi}{2} - \theta)

In trigonometry:

\cot(\frac{\pi}{2} - \theta) = \tan(\theta)

Hence:

\cot(\frac{\pi}{2} - \theta) = 9

Solving (d):

\csc^2(\theta)

This is calculated as:

\csc^2(\theta) = (\csc(\theta))^2

\csc^2(\theta) = (\frac{1}{\sin(\theta)})^2

Where:

\sin(\theta) = \frac{Opposite}{Hypotenuse}

\sin(\theta) = \frac{9}{\sqrt{82}}

So:

\csc^2(\theta) = (\frac{1}{\frac{9}{\sqrt{82}}})^2

\csc^2(\theta) = (\frac{\sqrt{82}}{9})^2

\csc^2(\theta) = \frac{82}{81}

You might be interested in
Find the next three sequence of 1,3, 9, 27,<br>​
Andreyy89

Answer: 81, 243, 729

Step-by-step explanation:

<u>STEP ONE: Find a pattern in the sequence</u>

3 ÷ 1 = 3

9 ÷ 3 = 3

27 ÷ 9 = 3

As we can see from the given sequence, each number multiplies 3 to get the next term.

<u>STEP TWO: Find the next three terms</u>

27 × 3 = 81

81 × 3 = 243

243 × 3 = 729

Hope this helps!! :)

Please let me know if you have any questions

4 0
2 years ago
Write the decimal form for the number name below. Six hundred six thousandths
alisha [4.7K]

Answer:

600.006 would be the answer

6 0
2 years ago
Simplify 27^2.<br><br> please (thxx)
adoni [48]

Answer:

729

Step-by-step explanation:

Raise 27 to the power of 2.

729

4 0
2 years ago
What's the surface area ratio &amp; the volume ratio??<br><br> please help me ASAP!!
Ulleksa [173]

Answer:

Step-by-step explanation:

Volumes of two spheres A and B = 648 cm³ and 1029 cm³

Things to remember:

1). Scale factor of two objects = \frac{r_1}{r_2} [r_1 and r_2 are the radii of two circles]

2). Area scale factor = \frac{(r_1)^2}{(r_2)^2}

3). Volume scale factor = \frac{(r_1)^3}{(r_2)^3}

Volume scale factor Or Volume ratio = \frac{V_A}{V_B}

                         \frac{(r_1)^3}{(r_2)^3}= \frac{648}{1029}

                         \frac{r_1}{r_2}=\sqrt[3]{\frac{648}{1029} }

                         \frac{r_1}{r_2}=\frac{6(\sqrt[3]{3})}{7(\sqrt[3]{3})}

                        \frac{r_1}{r_2}=\frac{6}{7}

Therefore, scale factor = \frac{r_1}{r_2}=\frac{6}{7}

                                      ≈ 6 : 7

Area scale factor Or area ratio = (\frac{r_1}{r_2})^2=(\frac{6}{7})^2

                                                   = \frac{36}{49}

                                                   ≈ 36 : 49

Volume scale factor or Volume ratio = \frac{648}{1029}

                                                             = \frac{216}{343}

                                                             ≈ 216 : 343

4 0
2 years ago
Need help with this question pre collegee
DaniilM [7]

Answer:

Step-by-step explanation:

the domain is (-∞,∞)

8 0
2 years ago
Other questions:
  • Every square meter of solar paneling produces 0.2 kilowatts of electricity. Which of the following models this situation?
    11·2 answers
  • Which of the following are solutions?
    14·1 answer
  • this is a pretest so i haven't learned about any of this yet please provide help i thought it was the cross multiplication thing
    7·1 answer
  • Which answer is the equation of the line represented in function notation?
    7·1 answer
  • Calculate the value of x to one decimal place. a0inches
    15·1 answer
  • What multiplies to -120 and adds up to 19
    6·1 answer
  • Please help with this question it is 60% of my grade.
    7·2 answers
  • 1. Albert Einstein is driving down a country road at the speed of light. Just kidding. He's
    9·2 answers
  • you have $15,000 to invest in a bank account. Capital one bank pays 5% compounded quarterly, and bank of America pays 4.5% compo
    15·1 answer
  • PLLLLEASE ASAP GUYS PLEASEE OMG
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!