1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mario62 [17]
3 years ago
8

Given tan theta =9, use trigonometric identities to find the exact value of each of the following:_______

Mathematics
1 answer:
Ludmilka [50]3 years ago
4 0

Answer:

(a)\ \sec^2(\theta) = 82

(b)\ \cot(\theta) = \frac{1}{9}

(c)\ \cot(\frac{\pi}{2} - \theta) = 9

(d)\ \csc^2(\theta) = \frac{82}{81}

Step-by-step explanation:

Given

\tan(\theta) = 9

Required

Solve (a) to (d)

Using tan formula, we have:

\tan(\theta) = \frac{Opposite}{Adjacent}

This gives:

\frac{Opposite}{Adjacent} = 9

Rewrite as:

\frac{Opposite}{Adjacent} = \frac{9}{1}

Using a unit ratio;

Opposite = 9; Adjacent = 1

Using Pythagoras theorem, we have:

Hypotenuse^2 = Opposite^2 + Adjacent^2

Hypotenuse^2 = 9^2 + 1^2

Hypotenuse^2 = 81 + 1

Hypotenuse^2 = 82

Take square roots of both sides

Hypotenuse =\sqrt{82}

So, we have:

Opposite = 9; Adjacent = 1

Hypotenuse =\sqrt{82}

Solving (a):

\sec^2(\theta)

This is calculated as:

\sec^2(\theta) = (\sec(\theta))^2

\sec^2(\theta) = (\frac{1}{\cos(\theta)})^2

Where:

\cos(\theta) = \frac{Adjacent}{Hypotenuse}

\cos(\theta) = \frac{1}{\sqrt{82}}

So:

\sec^2(\theta) = (\frac{1}{\cos(\theta)})^2

\sec^2(\theta) = (\frac{1}{\frac{1}{\sqrt{82}}})^2

\sec^2(\theta) = (\sqrt{82})^2

\sec^2(\theta) = 82

Solving (b):

\cot(\theta)

This is calculated as:

\cot(\theta) = \frac{1}{\tan(\theta)}

Where:

\tan(\theta) = 9 ---- given

So:

\cot(\theta) = \frac{1}{\tan(\theta)}

\cot(\theta) = \frac{1}{9}

Solving (c):

\cot(\frac{\pi}{2} - \theta)

In trigonometry:

\cot(\frac{\pi}{2} - \theta) = \tan(\theta)

Hence:

\cot(\frac{\pi}{2} - \theta) = 9

Solving (d):

\csc^2(\theta)

This is calculated as:

\csc^2(\theta) = (\csc(\theta))^2

\csc^2(\theta) = (\frac{1}{\sin(\theta)})^2

Where:

\sin(\theta) = \frac{Opposite}{Hypotenuse}

\sin(\theta) = \frac{9}{\sqrt{82}}

So:

\csc^2(\theta) = (\frac{1}{\frac{9}{\sqrt{82}}})^2

\csc^2(\theta) = (\frac{\sqrt{82}}{9})^2

\csc^2(\theta) = \frac{82}{81}

You might be interested in
What is 5 = 5/6x x =
laila [671]

Answer:

6

Step-by-step explanation:

3 0
3 years ago
Image attached below
Alika [10]

Answer: n = 6

Step-by-step explanation:

The red dot(n) is on 6 so n =6

4 0
3 years ago
Suppose that f(x)=3x+1....
skad [1K]

Answer:

3

Step-by-step explanation:

f(x) = 3x+1

f(x+h) = 3(x+h)+1 = 3x+3h+1

f(x+h) - f(x)= 3x+3h+1-3x-1 = 3h

3h/h=3

4 0
2 years ago
The average value of the function y = x² – 1 on [0, 12] is
shusha [124]

Answer:

47.

Step-by-step explanation:

1) the rule:

f_{avr}=\frac{1}{b-a} \int\limits^b_a {f(x)} \, dx ,

where a;b are 0 and 12, f(x)=x²-1.

2) according to the rule above:

f_{avr}=\frac{1}{12-0} \int\limits^{12}_0 {(x^2-1)} \, dx=\frac{1}{12}(\frac{x^3}{3}-x)|^{12}_0=48-1=47.

3 0
2 years ago
Round 66.3899872389 to the nearest thousandth
ddd [48]

Answer:

66.390

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
Other questions:
  • Let f(x) = x2 - 16. Find f-1(x).
    6·2 answers
  • Respond quickly!!!!!!!!!!!
    13·1 answer
  • TO the nearest foot ,what is the circumference of a circular swimming pool that has a radius of 6 feet ?
    14·2 answers
  • Help me please And thank you
    7·2 answers
  • Explain why any rational number is either a terminating or repeating decimal
    9·1 answer
  • One solution, infinitely many solutions, or no solution for #13?
    9·2 answers
  • What is the end behavior of f(x)=4x^4-3x^2?
    10·1 answer
  • How do I draw and determine the equation of a trend line on a scatterplot
    6·1 answer
  • Solve the problem . (x – 2) = –14(x – 8)<br> 1) x=0<br> 2)x=--5 1/3<br> 3)x=-3 1/5<br> 4)x=3 1/5
    8·1 answer
  • Given negative two and one third times negative five and fifteen hundredths, determine the product.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!