Answer:
1. Proved down
2. proved down
3. f(10) = -20 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5
Step-by-step explanation:
Let us explain how to solve the question
∵ f(0) = -20, f(n) = f(n - 1) - 5 for n > 1
→ That means we have an arithmetic sequence with constant
difference -5 and first term -20
1. → f(1) means we need to find the second term, which equal the
term - 5
∵ f(1) means n = 1
∴ f(1) = f(1 - 1) - 5
∴ f(1) = f(0) - 5
∵ f(0) = -20
∴ f(1) = -20 - 5 → Proved
2. → f(3) means we need to find the third term, which equal the
second term - 5
∵ f(3) means n = 3
∴ f(3) = f(3 - 1) - 5
∴ f(3) = f(2) - 5
→ f(2) = f(1) - 5
∵ f(1) = -20 - 5
∴ f(2) = [-20 - 5] - 5 = -20 - 5 - 5
∴ f(3) = [-20 - 5 - 5] - 5
∴ f(3) = -20 - 5 - 5 - 5 → Proved
3. → From 1 and 2 we notice that the number of -5 is equal to n,
at n = 1 there is one (-5), when n= 3 there are three (-5)
∵ n = 10
∴ There are ten (-5)
∴ f(10) = -20 - 5(10)
∴ f(10) = -20 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 → Proved
The equation that can be used to represent total tickets sales is 2170 = 5s + 2f + 10a
<h3>Equation</h3>
let
- Number of students tickets = s
- Number of faculty tickets = f
- Number of alumni tickets = a
Expression for number of students tickets sold;
s = f + 15
Expression for number of faculty tickets sold;
f = 2a
Expression for number of alumni tickets sold;
f = 2a
a = f/2
- Cost of students tickets = $5
- Cost of faculty tickets = $2
- Cost of Alumni tickets= $10
- Total revenue = $2170
2170 = 5s + 2f + 10a
Learn more about equation:
brainly.com/question/4344214
#SPJ1
Answer:
surely it's 200 marbles bc 2/4 is equal to 1/2 and if u then half 400 you get 200
Step-by-step explanation:
12
since the difference of the first and third value is ten, each value is five more than the previous value
Answer:

Now we can find the second central moment with this formula:

And replacing we got:

And the variance is given by:
![Var(X) = E(X^2) - [E(X)]^2](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20-%20%5BE%28X%29%5D%5E2)
And replacing we got:

And finally the deviation would be:

Step-by-step explanation:
We can define the random variable of interest X as the return from a stock and we know the following conditions:
represent the result if the economy improves
represent the result if we have a recession
We want to find the standard deviation for the returns on the stock. We need to begin finding the mean with this formula:

And replacing the data given we got:

Now we can find the second central moment with this formula:

And replacing we got:

And the variance is given by:
![Var(X) = E(X^2) - [E(X)]^2](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20-%20%5BE%28X%29%5D%5E2)
And replacing we got:

And finally the deviation would be:
