Answer:
The most appropriate value of the critical value is 2.289.
Step-by-step explanation:
We are given that a researcher takes a random sample of 41 bulbs and determines that the mean consumption is 1.3 watts per hour with a standard deviation of 0.7.
We have to find that when constructing a 97% confidence interval, which would be the most appropriate value of the critical value.
Firstly, as we know that the test statistics that would be used here is t-test statistics because we don't know about the population standard deviation.
So, for finding the critical value we will look for t table at (41 - 1 = 40) degrees of freedom at the level of significance will be
.
Now, as we can see that in the t table the critical values for P = 1.5% are not given, so we will interpolate between P = 2.5% and P = 1%, i.e;

So, the critical value at a 1.5% significance level is 2.289.
First to get the equation you knew to understand one thing about perpendicular lines. The slope of the line is the opposite reciprocal of the perpendicular lines or the new slope is m = 10.
Then you use the formula
y = mx + b
you plug in your values from the point and the new slope.
(1,5) with new slope m
5= 10(1)+b
5-10=b
-5 = b
then make your new equation
y = 10x -5
that's your line that goes through point (1,5) and is perpendicular to the line given
Work shown above! Answer is
a = 5 b = -2 c = 0
This means that if the model is 1 in lengh then th ereal car is 20 times of that or 20 in legnth
so to find the answer, just multiply model by 20
8.7 =model
real=8.7 times 20=174
real car is 174 inches
12 inches=1 foot
conversion factor
1 ft/12in=1=convesion
so
174 times 1/12=14 and 6/12
the answer is 14 feet and 6 inches or 14.5 feet