1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sphinxa [80]
3 years ago
10

PLEASE HELP!!!!!!!!! WILL MARK BRAINLIST!!!!!!!!

Mathematics
2 answers:
Nookie1986 [14]3 years ago
8 0

Answer:

An arithmetic sequence is made up of terms. In Mathematics, a term means each of the quantities in a ratio, series, or mathematical expression. For example, a series of numbers regarding an arithmetic sequence would be 9, 6, 3, 0, -3, -6, -9. Therefore, an arithmetic sequence is made up of terms.

Dafna11 [192]3 years ago
3 0

Answer:

its a. expression

Step-by-step explanation:

You might be interested in
If the range of the function f(x) = 7x – 2.7 is {14.1, 30.9, 41.4, 58.9, 68}, what is its domain?
Drupady [299]

domain is {2.4, 4.8, 6.3, 8.8, 10.1 }

For domain, equate f(x) to each value in the range and solve for x

7x - 2.7 = 14.1 ⇒ x = \frac{x14.1 + 2.7}{7} = 2.4

7x - 2.7 = 30.9 ⇒ x = \frac{30.9 + 2.7}{7} = 4.8

7x - 2.7 = 41.4 ⇒ x = \frac{41.4 + 2.7}{7} = 6.3

7x - 2.7 = 58.9 ⇒ x = \frac{58.9 + 2.7}{7} = 8.8

7x - 2.7 = 68 ⇒ x = \frac{68 + 2.7}{7} = 10.1


7 0
3 years ago
Help ASAP!!!!!!!!!!!! Show your work!!!!!!!!!!!
Mariulka [41]

Answer:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

Step-by-step explanation:

Solve for x:

5 x^4 - 7 x^3 - 5 x^2 + 5 x + 1 = 0

Eliminate the cubic term by substituting y = x - 7/20:

1 + 5 (y + 7/20) - 5 (y + 7/20)^2 - 7 (y + 7/20)^3 + 5 (y + 7/20)^4 = 0

Expand out terms of the left hand side:

5 y^4 - (347 y^2)/40 - (43 y)/200 + 61197/32000 = 0

Divide both sides by 5:

y^4 - (347 y^2)/200 - (43 y)/1000 + 61197/160000 = 0

Add (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000 to both sides:

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (y^2 + sqrt(61197)/400)^2:

(y^2 + sqrt(61197)/400)^2 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

Add 2 (y^2 + sqrt(61197)/400) λ + λ^2 to both sides:

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (y^2 + sqrt(61197)/400 + λ)^2:

(y^2 + sqrt(61197)/400 + λ)^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (2 λ + 347/200 + sqrt(61197)/200) y^2 + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2:

(y^2 + sqrt(61197)/400 + λ)^2 = y^2 (2 λ + 347/200 + sqrt(61197)/200) + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2 + (4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000)/(4 (2 λ + 347/200 + sqrt(61197)/200))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000 = (8000000 λ^3 + 60000 sqrt(61197) λ^2 + 6940000 λ^2 + 34700 sqrt(61197) λ + 6119700 λ - 1849)/1000000 = 0.

Thus the root λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2

Take the square root of both sides:

y^2 + sqrt(61197)/400 + λ = y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)) or y^2 + sqrt(61197)/400 + λ = -y sqrt(2 λ + 347/200 + sqrt(61197)/200) - 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200))

Solve using the quadratic formula:

y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) + sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197))) - sqrt(2) sqrt(400 λ + 347 + sqrt(61197))) or y = 1/40 (-sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) where λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3))

Substitute λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) and approximate:

y = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x - 7/20 = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x - 7/20 = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x - 7/20 = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or x = 0.841952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x - 7/20 = 1.23204

Add 7/20 to both sides:

Answer: x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

3 0
3 years ago
Simplify the expression.
ivann1987 [24]

Answer:

x

Step-by-step explanation:

(log to the base 3) of 27^x can be re-written as

x*(log to the base 3) of 27, which is equivalent to:

x*(log to the base 3 of 3^3)  =  x

So the answer is simply " x "

8 0
3 years ago
A little help here ^-^
frosja888 [35]
252 is the answer because you can square of every small box to each parts area then add it up
8 0
4 years ago
Read 2 more answers
Calculate 4 raise to power 2 multiply by 5 raise to poer 2 minus 18 raise to power 2​
Paladinen [302]

Answer:

76

Step-by-step explanation:

4^2 x 5^2 - 18^2

PEMDAS is our acronym for order of operations: Parentheses, exponents, multiplication, division, addition, subtraction.

Since we have no parentheses, we'll calculate the numbers and exponents (PEMDAS) first. "to the power of 2" is also called "squared" and means multiplying that number by itself.

(4x4) x (5x5) - (18x 18)

=16 x 25 - 324

Now we multiply: (PEMDAS)

= 400 - 324

then subtract: (PEMDAS)

=76

3 0
3 years ago
Read 2 more answers
Other questions:
  • The population of growth of a town is 20,000 it decreased at a rate of 9% per year in about how many years will the population b
    14·1 answer
  • Which diagram shows the most useful positioning and accurate labeling of a rhombus in the coordinate plane?
    15·1 answer
  • The cross products property states that the product of the ___ equals the products of the ___
    15·1 answer
  • A science test, which is worth 100 points, consists of 24 questions. Each question is worth either 3 points or 5 points. If xis
    5·1 answer
  • Please help me on number 1
    14·1 answer
  • (-9x^2 - 2x) – (-9x^2 - 3x)
    13·1 answer
  • Please help !!
    14·2 answers
  • When a figure rotates around a point, this point is called the
    10·2 answers
  • Write the expression using exponents. 95 · 95 · 95 · 95 95
    15·1 answer
  • Find an equation of a line through (2, 1) and perpendicular to - 2x + 4y = 8.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!