Answer:
Step-by-step explanation:
1) Let the random time variable, X = 45min; mean, ∪ = 30min; standard deviation, α = 15min
By comparing P(0 ≤ Z ≤ 30)
P(Z ≤ X - ∪/α) = P(Z ≤ 45 - 30/15) = P( Z ≤ 1)
Using Table
P(0 ≤ Z ≤ 1) = 0.3413
P(Z > 1) = (0.5 - 0.3413) = 0.1537
∴ P(Z > 45) = 0.1537
2) By compering (0 ≤ Z ≤ 15) ( that is 4:15pm)
P(Z ≤ 15 - 30/15) = P(Z ≤ -1)
Using Table
P(-1 ≤ Z ≤ 0) = 0.3413
P(Z < 1) = (0.5 - 0.3413) = 0.1587
∴ P(Z < 15) = 0.1587
3) By comparing P(0 ≤ Z ≤ 60) (that is for 5:00pm)
P(Z ≤ 60 - 30/15) = P(Z ≤ 2)
Using Table
P(0 ≤ Z ≤ 1) = 0.4772
P(Z > 1) = (0.5 - 0.4772) = 0.0228
∴ P(Z > 60) = 0.0228
Answer:
The best point estimate for the mean monthly car payment for all residents of the local apartment complex is $624.
Step-by-step explanation:
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
In this question:
We apply the inverse Central Limit Theorem.
The mean monthy car payment for 123 residents of the local apartment complex is $624.
So, for all residents of the local apartment complex, the best point estimate for the mean monthly car payment is $624.
Answer:
When X = 24
Step-by-step explanation:
Use derivative to locate the turning point.
48 - 2X = 0, => X = 24
Answer:
5
Step-by-step explanation:
here, the highest degree is 5 so the degree of polynomial is also 5.