The speed that the person needs to leave the ground will be 4.32m/s
From the question given,
Height = 95cm
Since the person leave the ground v = 0m/s
acceleration due to gravity g = 9.8m/s²
Using the equation of motion
v² = u² + 2as
a = -g (upward motion)
s = h (distance changes to height)
The equation will become:
0² = u² - 2gh
0² = u² - 2(9.8)(0.95)
u² = 18.62
u = √18.62
u = 4.32
Hence the speed that the person needs to leave the ground will be 4.32m/s
Learn more here: brainly.com/question/20352766
Answer:
The speed of water flow inside the pipe at point - 2 = 34.67 m / sec
Explanation:
Given data
Diameter at point - 1 = 3.2 cm
Velocity at point - 1 = 1.1 m / sec = 110 cm / sec
Diameter at point - 2 = 0.57 cm
Velocity at point - 2 = ??
We know that from the continuity equation the rate of flow is constant inside a pipe between two points.
Thus
⇒
×
=
× 
⇒
×
×
=
⇒
×
=
× 
⇒
× 110 =
× 
⇒
= 3467 cm / sec
⇒
= 34.67 m / sec
Thus the speed of water flow inside the pipe at point - 2 = 34.67 m / sec
Explanation:
Hey there!!
Here, Given is,
Efficiency = 75%
VR = no. of pulleys = 5
Now,


100% ma = 75%×5


Therefore, MA is 3.75.
<em><u>Hope it helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Electric field due to a point charge is given by formula

now due to negative charge also the magnitude of electric field will be same
only difference is the direction of field due to negative charge is radially inwards
now we can say that net field due to these two charges is given as



now it is given that distance r is very large than "d" so we can say

<em>so above is the electric field due to dipole</em>
Explanation:
the heat required to raise the temperature of the unit mass of a given substance by a given amount (usually one degree).