Answer:
P = 9 is the max value
Step-by-step explanation:
Sketch
2x + 4y = 10
with x- intercept = (5, 0) and y- intercept (0, 2.5)
x + 9y = 12
with x- intercept = (12, 0) and y- intercept = (0,
)
Solve
2x + 4y = 10 and x + 9y = 12 to find the point of intersection at (3, 1)
The region corresponding to the solution of the system of constraints
Has vertices at (0,
), (0, 0) , (5, 0) and (3, 1)
Now evaluate the objective function at each vertex.
(0, 0) can be excluded as it will not give a maximum
(5, 0) → P = 5 + 0 = 5
(0,
) → 0 + 8 = 8
(3, 1) → 3 + 6(1) = 3 + 6 = 9 ← maximum value
Thus the maximum value is 9 when x = 3 and y = 1
Answer:
Monomial, degree is 5
Step-by-step explanation:
<h3>Answer: Choice C</h3>
======================================================
Explanation:
The x coordinate of the preimage point Q is x = 6.
The x coordinate of the image point Q' is x = 21.
The ratio of image over preimage is 21/6 = (3*7)/(3*2) = 7/2
You'll get this same value if you do the same steps with the y coordinates.
Therefore, the scale factor is 7/2 and the dilation rule is 
Note: 7/2 = 3.5
We know, 1 m = 100 cm
Multiply both sides by 7,
7 m = 100 * 7 = 700 cm
In short, Your Answer would be 700 cm
Hope this helps!
Answer:
1∠22.5°, 1∠112.5°, 1∠202.5°, 1∠292.5°
Step-by-step explanation:
A root of a complex number can be found using Euler's identity.
<h3>Application</h3>
For some z = a·e^(ix), the n-th root is ...
z = (a^(1/n))·e^(i(x/n))
Here, we have z = i, so a = 1 and z = π/2 +2kπ.
Using r∠θ notation, this is ...
i = 1∠(90° +k·360°)
and
i^(1/4) = (1^(1/4))∠((90° +k·360°)/4)
i^(1/4) = 1∠(22.5° +k·90°)
For k = 0 to 3, we have ...
for k = 0, first root = 1∠22.5°
for k = 1, second root = 1∠112.5°
for k = 2, third root = 1∠202.5°
for k = 3, fourth root = 1∠292.5°