1532 ÷ 36 = 42 and remain 20.
So there were 20 CDS in the remains box
Answer:
probability that both passes a defective item is 0.8742
<h3>
Step-by-step explanation:</h3>
probability that the first inspector misses is Pr( 1st misses)= 0.06
therefore the probability he does not miss is
Pr(1st passes)= 1 - Pr( 1st misses) = 1 - 0.06 = 0.94
probability that the second misses is Pr( 2nd misses) = 0.07
therefore probability that 2nd does not miss is
Pr( 2nd passes) = 1- Pr( 2nd misses) = 0.93
probability that both passes a defective item is Pr(1st passes)*Pr( 2nd passes)
= 0.93*0.94 = 0.8742
First, we need to solve the differential equation.

This a separable ODE. We can rewrite it like this:

Now we integrate both sides.

We get:

When we solve for y we get our solution:

To find out if we have any horizontal asymptotes we must find the limits as x goes to infinity and minus infinity.
It is easy to see that when x goes to minus infinity our function goes to zero.
When x goes to plus infinity we have the following:

When you are calculating limits like this you always look at the fastest growing function in denominator and numerator and then act like they are constants.
So our asymptote is at y=8.
La diferencia entre los ángulos <em>AOB</em> y <em>COD</em> del sistema de tres ángulos <em>consecutivos</em> es igual a 25°.
La medida del ángulo BOC pertenenciente al sistema de tres ángulos consecutivos es igual a 20°.
<h3>Cómo analizar tres ángulos consecutivos</h3>
Por la geometría Euclídea conocemos que un conjunto de ángulos cuando comparten entre cada par de ángulos vecinos comparten el mismo vértice y la misma semirrecta.
De acuerdo con el enunciado, tenemos las siguientes condiciones:
∠AOB + ∠BOC = 125° (1)
∠BOC + ∠COD = 100° (2)
Por (1) y (2) tenemos las siguiente identidad:
∠AOB - 25° = ∠COD
∠AOB - ∠COD = 25°
La diferencia entre los ángulos <em>AOB</em> y <em>COD</em> del sistema de tres ángulos <em>consecutivos</em> es igual a 25°. 
En el segundo caso, tenemos el siguiente sistema:
∠AOB = ∠BOC + ∠COD (3)
∠AOB + ∠BOC - ∠COD = 40° (4)
Por (3) y (4) tenemos la siguiente identidad:
2 · ∠BOC = 40°
∠BOC = 20°
La medida del ángulo BOC pertenenciente al sistema de tres ángulos consecutivos es igual a 20°.
Para aprender más sobre ángulos, invitamos cordialmente a ver esta pregunta verificada: brainly.com/question/21209282
Answer:
the answer would be y=2x+4
Step-by-step explanation: